
Understanding Convolutional Networks with
APPLE : Automatic Patch Pattern Labeling for Explanation

Sandeep Konam, Ian Quah, Stephanie Rosenthal, Manuela Veloso
Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213 USA
{skonam,itq}@andrew.cmu.edu,srosenthal@sei.cmu.edu,veloso@cs.cmu.edu

Abstract

With the success of deep learning, recent efforts have been
focused on analyzing how learned networks make their classi-
fications. We are interested in analyzing the network output
based on the network structure and information flow through
the network layers. We contribute an algorithm for 1) analyz-
ing a deep network to find neurons that are “important" in
terms of the network classification outcome, and 2) automati-
cally labeling the patches of the input image that activate these
important neurons. We propose several measures of impor-
tance for neurons and demonstrate that our technique can be
used to gain insight into, and explain how a network decom-
poses an image to make its final classification.

Introduction
Deep learning models have been shown to improve ac-
curacy in a variety of application domains including im-
age classification (Krizhevsky, Sutskever, and Hinton 2012;
Szegedy et al. 2015), object detection ((Girshick 2015;
He et al. 2016)), and even robotics (e.g., localization (Yang
et al. 2016), navigation (Zhu et al. 2016), motion plan-
ning (Wulfmeier, Wang, and Posner 2016) and manipulation
(Zhang et al. 2015)). Despite its success, there is still little
insight into the internal operation and behavior of deep net-
work models, or how they achieve such good performance
(Zeiler and Fergus 2014).

Many different algorithms have been proposed with the
goal of explaining deep learning models, particularly for con-
volutional neural networks (CNNs) which analyze images.
For example, Class Activation Maps (CAM) explain the out-
put classification by visualizing a CNN’s most discriminative
pixels in the input image (Zhou et al. 2015). Local Inter-
pretable Model-agnostic Explanations (LIME) aims to learn
a more interpretable model locally around the prediction and
highlight the super-pixels with positive weight towards a spe-
cific class (Ribeiro, Singh, and Guestrin 2016). While these
approaches have been successful in visualizing important
pixels for classification, they do not explain how the network
used those features to make the prediction.

To address the challenge of determining how a network
uses image features, Fergus & Zeiler (Zeiler and Fergus 2014)

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

used deconvolutional networks (Zeiler, Taylor, and Fergus
2011) to visualize patterns that activate each neuron in the
network (e.g., facial features such as the eyes or nose, other
defining components of animals such as fur patterns, or even
whole objects). However, their analysis of individual neurons
and their image patch patterns was accomplished largely
manually, which is impractical given the size of today’s state-
of-the-art networks as well as the number of images that are
tested.

Building on this prior work, we contribute an algorithm to
automatically label the features of an image that the network
focuses on in order to explain why the network made its pre-
diction. We accomplish this by analyzing the neurons that
are most important to the output classification of an image as
well as the patterns that activate those neurons. Our proposed
approach, APPLE (Automatic Patch Pattern Labeling for Ex-
planation), first analyzes the signal propagation through each
layer of the network in order to find neurons that contribute
highly to the signal in subsequent layers. Then, it deconvolves
the important neurons at each layer to determine the parts
or patches of the image that these neurons use as their input.
Finally, our algorithm automatically labels the image patches
with attributes that describe the object in the image using a
separately-trained classifier.

We contribute several measures of neuron importance
within a network and we demonstrate that our algorithm
is able to use the measures to identify neurons that focus on
important attributes of recognized objects. Beyond simply
highlighting important pixels for visualization purposes, our
image patch labels can be used to explain an image classi-
fication without requiring a human to decipher the image
or manually probe the reasoning behind the prediction. On
image classification tasks, we demonstrate that our APPLE
algorithm reduces manual coding, finds important features of
images, and automatically classifies those features for human
interpretability.

Related work
We divide the prior research pertaining to understanding a
CNN’s predictions into two categories: weakly supervised
localization and network structure analysis.

In weakly supervised localization, the objective is to high-
light the object features (pixels) within an image. For exam-
ple, Class Activation Mapping (CAM) for CNNs use global



average pooling to visualize the discriminative object parts
detected by the CNN (Zhou et al. 2015). Similar methods use
other pooling techniques (e.g., global max pooling (Oquab et
al. 2015) and log-sum-exp pooling (Pinheiro and Collobert
2015)), or reduce the network structure requirements that
CAM imposes (Selvaraju et al. 2016). Local Interpretable
Model-agnostic Explanations (LIME) is another weakly su-
pervised localization technique (Ribeiro, Singh, and Guestrin
2016). In contrast to CAM which highlights discrimitive pix-
els, LIME finds a sparse linear approximation to the local
decision boundary of a given black-box ML system including
CNNs. Its visualization on an image allows a human operator
to inspect how the classification depends locally on the most
important input features. While these techniques use different
measures for determining which pixels in the image are most
important for classification, they do not analyze how the pixel
features are propagated through the network to arrive at a
prediction.

We build on prior work that aims to understand how infor-
mation propogates through a network (e.g., (Erhan et al. 2009;
Springenberg et al. 2014; Mahendran and Vedaldi 2015;
Zeiler and Fergus 2014)). For example, (Erhan et al. 2009)
find the optimal stimulus for each neuron by performing
gradient descent in image space to maximize the neuron’s ac-
tivation. Our work uses deconvolutional networks, which are
used to visualize which patterns activate each neuron (Zeiler,
Taylor, and Fergus 2011; Zeiler and Fergus 2014). Although
most of the network structural analyses, including (Zeiler and
Fergus 2014), provide insights into a CNN’s classification at
the neuron-level, they require human intervention to manu-
ally analyze the activations or the important image patches
to interpret how a network made a prediction. This manual
process does not scale as the network gets bigger or as the
number of images to analyze increases.

There is another category of work related to neural cap-
tion generation, where models learn to generate textual jus-
tifications for classifications of the primary neural model.
(Hendricks et al. 2016) use an LSTM caption generation
model with a loss function that encourages class discrimi-
native information to generate justifications for the image
classification of a CNN. (Park et al. 2016) produce both tex-
tual justification and a visual attention map. (Vedantam et
al. 2017) produce captions that are locally discriminative,
in the context of other images. However, all of these works
use natural language descriptions at a large scale, collecting
which has a prohibitive cost, compared to our work which
only uses labels corresponding to important attributes of the
objects.

Our Automatic Patch Pattern Labeling for Explanation
(APPLE) algorithm is built on top of Fergus & Zeiler (Zeiler
and Fergus 2014), but does not require any manual probing to
understand the image patches that activate individual neurons,
and we eliminate the need to analyze all of the neurons. In
particular, we focus only on analyzing neurons that are impor-
tant to the network. By assessing the ranked image patches
corresponding to important neurons, APPLE simultaneously
localizes the object within the image while also automatically
labeling those patches with object feature attributes (e.g.,
eyes, nose, paws as attributes of the object class polar bears).

Automatic Patch Pattern Labeling for
Explanation (APPLE)

Our goal is to explain the output of a CNN image classifier
by ranking the neurons based on importance (i.e., most con-
tribution to the final classification) and automatically labeling
their corresponding patches of the image. For example, when
classifying images of polar bears, some neurons within the
network are activated more than others and it is likely that
the most active neurons are detecting important attributes of
polar bears (e.g., their eyes, nose, or paws). We produce a
secondary classifier which takes as input the patches which
correspond to the important or most active neurons and au-
tomatically labels them based on a predefined list of bear
attributes. The combination of the important image patches
and corresponding predicted attribute labels of those patches
provide a qualitative understanding of what the CNN is using
to classify polar bears based on what appears in its important
regions in the image.

In order to accomplish this goal, we propose our APPLE
algorithm that:

1. finds high importance neurons within the CNN,

2. deconvolves the network to determine the patch of the
image that each important neuron looks at, and

3. automatically labels those patches using a secondary clas-
sifier to determine object features that the patch contains.

High importance Neurons
We base our importance functions on the deep network struc-
ture. In that structure, a neuron η in row j′ and column k′ in
layer l of a deep network takes input signal Xc′,j′,k′ on chan-
nel c′ (i.e., in images, r, g, and b each represent a channel).
Neurons in layer l are connected to layer l + 1 by weights,W .
A neuron’s weight matrix Wη′,η,m,n weighs the activations
of neuron η in layer l and the rectangle of m × n neurons
surrounding η that connect to neuron η′ in layer l + 1. Con-
volving W and X produces output Z where element Zc,j,k is
the value of the output neuron within channel c at row j and
column k. The activation Ac,j,k is a function of Z, φ(Zc,j,k).
Summarizing the definition formally, the forward propagation
step as a CNN is described based on (Goodfellow, Bengio,
and Courville 2016) as:

Zc,j,k =
∑
c,m,n

Xc′,j′+m−1,k′+n−1Wη′,η,m,n (1)

Ac,j,k = φ(Zc,j,k) (2)

The propagation of information through the network can
be considered a function of the post-activation output of a
neuron, Ac,j,k and the weights Wη′,η,m,n.

We propose four measures of importance based on the
weights and activations of each neuron (j, k) in layer l. Note
that the weights and activations are a function of the matrix
size m × n that surround each neuron, and therefore all
of the importance measures of a neuron vary over indices
(j + m̂, k + n̂) where m̂ = (−m2 , m2 ) and n̂ = (−n2 ,

n
2 ).



Figure 1: The APPLE algorithm a) ranks neurons based on importance, b) identifies image patches corresponding to the top 5
neurons from (a), and then c) labels the patches using a secondary classifier to determine important object features.

• Activation Matrix Sum: The sum of all values in the
post-activation output Ac,j,k:∑

m̂,n̂

Ac,j+m̂,k+n̂ (3)

• Activation Matrix Variance: The variance of all values
in the post-activation output Ac,j,k:

σ2
m̂,n̂Ac,j+m̂,k+n̂ (4)

• Weight Matrix Sum: The sum of all values in the weight
matrix Wη′,η,m,n:∑
m̂,n̂

Wη′,η,m,n[m̂][n̂] · ϕ, where ϕ =

{
1, if Ac,j,k ≥ 0

0, otherwise
(5)

• Weight Matrix Variance: The variance of all values in
the weight matrix Wη′,η,m,m:

σ2
m̂,n̂ Wη′,η,m,n[m̂][n̂] · ϕ, where ϕ =

{
1, if Ac,j,k ≥ 0

0, otherwise
(6)

Once the importance measure is computed for each neuron,
they can be sorted and ranked to find the top neurons for each
layer. These top neurons are used in the next step: patch
extraction.

Extraction of Patches corresponding to neuron
Given the ranked neurons, we are interested in identifying the
image patches that they convolve (Figure 1b). The APPLE
algorithm determines the image patches by deconvolving the
network using a multi-layered Deconvolutional Network (de-
convnet) as in Zeiler and Fergus ((Zeiler and Fergus 2014)).
A deconvnet can be thought of as a convnet (CNN) model that
uses the same components (filtering, pooling) but in reverse,
so instead of mapping pixels to features does the opposite.

To examine a given convnet activation, APPLE sets all
other activations in the layer to zero and pass the feature
maps as input to the attached deconvnet layer. Then APPLE
successively (i) unpools, (ii) rectifies and (iii) filters to recon-
struct the activity in the layer beneath that gave rise to the
chosen activation. This is then repeated until the input pixel
space, referred to as a patch is reached.

Patch classifier
In order to label the object attributes in each high importance
patch, we construct and train a secondary classifier. Given
a set of object attributes as classifier labels (e.g., eyes, nose,
ear, fur, and paws for polar bears), we crop image patches
as training data for each of these labels. We also include a
‘none’ label which represents our background scene and parts
of the object that may be difficult to distinguish.

Once the patch classifier is trained, it can be run on the
important image patches in order to determine the attribute
label. Because we use a multi-class classifier, APPLE ranks
the likelihood of each label on each patch (Figure 1c) to deter-
mine the most likely label. Compared to (Zeiler and Fergus
2014) which requires manual probing to understand patches
that activate neurons, our patch classifier automatically deter-
mines the labels that can be used to explain what important
areas of the image the network focused on.

Putting it all together
Given an image (Figure 3a) and a CNN model, our APPLE
algorithm forward propagates the image to determine its clas-
sification. If APPLE has an attribute labeler for that class, it
then automatically analyzes the CNN to find the top N most
important neurons and constructs a list of image patch regions
to label. Figure 3b shows the 15 image patches selected by
the Activation Matrix Sum measure (top 5 neurons from the
three layers - layers 5-7 - of interest) for polar bears. APPLE
runs the patch classifier on the image patches to determine the
most likely attribute labels (Figure 4a). Labeled patches are
then further sorted based on the maximum confidence. The
important patches are a visual representation of the explana-
tion of how the network determined the image’s classification.
The labels represent a semantic representation of the same
explanation without requiring humans to interpret the image.

Experiments
In order to demonstrate the ability of our APPLE algorithm to
find important neurons and corresponding image patches and
then automatically label them, we evaluated its use on two
different datasets and three different object recognition tasks.
In particular, we tested APPLE’s ability to find the same
5 attributes of polar bears and dogs - eyes, ears, fur, nose,



Figure 2: Sample training data used to train the Patch classi-
fier for the polar bear class

and paw - as well as its ability to find attributes of people -
head, torso, hand, leg, and foot. We consider animal images
particularly challenging as the background of the images
often contains similar colors as the animals themselves, and
because features that a person would consider to be strong
distinguishers - black eyes and black nose - could easily
be confused with each other and with rocks present in the
environment.

In this section, we describe our experimental setup using
the VGG-16 classifier, our own trained patch classifer and the
results of our experiments to evaluate the ability of our impor-
tance metrics to find regions of the object and the accuracy
of our patch labels.

CNN Classifier
For the purpose of our experiment we chose the VGG-16
architecture (Simonyan and Zisserman 2014) because it is
a deep network with enough intermediate layers to gradu-
ally decrease the component granularity (to study increasing
feature composition and its affect on final confidence). The
VGG-16 architecture consists of 13 convolution layers fol-
lowed by 3 dense layers, with max pooling after the 2nd, 4th,
7th, 10th and 13th layer. Despite the number of layers avail-
able for us to analyze, we only evaluated the image patches
for neurons between layers 5 and 7 for two reasons. First,
the image patches in the first few layers were too small to
train a patch classifier for. Furthermore, results from Ranzato
et al.(Ranzato et al. 2006) already show that the first layers
learn stroke-detectors and Gabor-like filters. Additionally,
image patches corresponding to the last few layers include
a majority of the image and contain too many of the object
attributes to accurately label just one.

In order to evaluate APPLE on different image classes
and its importance functions on different weights within the
VGG-16 architecture, we trained the VGG-16 architecture
in two ways. To test our approach on polar bears and dogs,
we used pre-trained weights for ImageNet(Russakovsky et
al. 2015) as provided in (Chollet and others 2015). To test
our approach on people, we trained VGG-16 on the INRIA
dataset (Dalal and Triggs 2005).

Patch Classifier
In order to train our patch classifier, we listed distinguish-
ing attributes of polar bears and great pyranees or dogs -

ears, eyes, nose, fur, and paws, and that of human beings -
head, torso, hand, leg, and foot and manually cropped those
important features from images in the Imagenet dataset (Rus-
sakovsky et al. 2015) and INRIA dataset (Dalal and Triggs
2005) respectively. For the ‘none’ class, we collected back-
ground patches from the same images. We had around 80
images representing each attribute, totalling the training data
size to be 480 for each class (polar bear, dog, person). Each
training image was 128x128 pixels. Figure 2 contains sample
patches from our classifier dataset for polar bear.

We used a multi-class Support Vector Classifier (AdaBoost-
SVM (Li, Wang, and Sung 2008)) with c=0.771, and γ =
0.096, with an rbf kernel, determined by running K-fold
cross validation on the patch data. The classifier obtained
an average test set accuracy of 80% when the data was split
into 80% training- 20% test. SVMs were chosen for the task
because of their ability to handle high dimensional complex
data: an RBF kernel was used as described in (Li, Wang, and
Sung 2008). Our patch classifiers demonstrate the applicabil-
ity of APPLE to a wide variety of image classes, and we note
that we did not spend a large amount of time to acheive our
attribute label results. It is possible to train a more accurate
classifier on a larger dataset for even better results.

Evaluation Setup
Our experiments were conducted on 360 images, with 120
images per each class (polar bears, great pyrenees and per-
sons). We selected the test images by searching for specific
class on the Internet. Because our goal is to demonstrate the
ability of APPLE to find important patches in any image
and because the available labeled datasets for these classes is
small, we chose to manually search for images of the classes
in a variety of environments, poses, and conditions. The selec-
tion process involved criteria such as pose, number of classes
visible in the image, lighting, and image resolution. By vary-
ing the different settings we could determine how different
conditions influence the results of both our high importance
neuron ranking method, as well as our patch classifier. We
evaluate APPLE based on two measures of success: object
localization and patch label precision.

Object Localization Measure: We first evaluated AP-
PLE’s ability to find image patches that were localized on the
object of interest that the CNN is classifying (i.e., polar bears,
dogs, and people in our experiments). Object localization is
measured as the ratio of number of patches containing pixels
of the object (polar bear, dog, person) to the total number of
patches. We analyzed three different types of objects to un-
derstand whether our importance functions are successful for
different trained CNN classes, and compare against CAM’s
ability to find the important attributes of the object as well.

To do this, we outlined APPLE’s important patches using
the Activation matrix sum measure on top of the original
image. Figure 5 illustrates the localization abilities of our
APPLE algorithm (red boxes indicate patches belonging to
layers 5 - 7). We manually evaluated each image patch to
determine whether it contains the object. For example, Figure
3b shows 15 high importance patches picked by our heuristic.
Each of these patches contains pixels belonging to polar bear,
and hence they are all deemed as correct patches. In total,



(a) (b)

Figure 3: (a): Input image. (b): High Importance Neuron Patches selected by APPLE algorithm.

(a) (b)

Figure 4: APPLE sorts the labeled patches by confidence to present to a human in order to explain the CNN’s image classification.
Two example images are shown with their important patches selected using Activation matrix sum.

15 important patches (top 5 patches across 3 layers) were
evaluated as to whether they contained portions of the object
(using our input image as reference).

Patch Label Precision Measure: We evaluated patch
classifier’s precision at labeling the image patches. Patch
label precision is measured as the ratio of correctly classified
patches to the total number of patches. A patch classification
is considered correct if the top label output by the patch
classifier matches our manually labeled ground-truth.

Results
Table 1 shows the precision of each of our evaluation mea-
sures on all 360 of the test images. We first note that our
results were very similar for all four proposed importance
metrics indicating that they are all successful and that any
suggested measure could be used for the purpose of extract-
ing neurons and thereby important patches. We compare the
four-proposed metrics to a fifth metric which randomly picks
15 neurons (5 neurons across 3 layers). For clarity, we will
report Activation Matrix Sum results which correspond to
the image patches in Figure 5.

We first evaluated the abilty of our algorithm to localize
objects in the image. As seen from Table 1, the four proposed
importance metrics excel at object localization compared to
the metric which randomly picks neurons. As seen from Fig-

ure 5, most (93%) of the red boxes are centered around the
object, indicating that the important patches that APPLE finds
are contributing highly to the classification. If we take into
account the entire outline of our patches, they encompass the
entire object, always more of the object than CAM does (Fig-
ure 5d,e,f). This is significant because CAM requires mod-
ifications to the CNN architectures, whereas our approach
works without any network modifications. Additionally, AP-
PLE labels those important patches with object attributes,
further automating the process. Because the patches are ac-
curate for each of the three object classes and for different
weights within the VGG-16 architecture, we conclude that
APPLE’s importance functions successfully and accurately
find important patches across a variety of objects (polar bear,
dog, and person) and datasets (ImageNet and INRIA).

Our next set of experiments focused on the accuracy of
our patch labels. Table 1 shows the patch label precision of
the AdaBoost SVM on the important image patches for all
360 images. Our results show that we are able to label the
image patches much more accurately than random guess-
ing. However, the top-1 precision is less than 0.7 likely due
to the choice of patch classifier and the quality of training
data provided. For example, we only obtained 80 patches
per label and the low-resolution of the images led to high
confusion between the components (eyes and nose as well



(a) (b) (c)

(d) (e) (f)

Figure 5: APPLE and CAM each find important regions of images. In APPLE (a,b,c), red boxes indicate layers 5 - 7, and they
encompass the entire object. On the CAM images (d,e,f), the heatmap visualizes its important pixels.

Table 1: Evaluation of important patches averaged over all
image classes.

Evaluation Measure Object
Local-
ization

Label
Precision
(Top-1)

Label
Precision
(Top-2)

Weight Sum 0.91 0.610 0.810
Weight Variance 0.92 0.632 0.784
Activation Sum 0.93 0.697 0.832
Activation Variance 0.91 0.641 0.871
Random 0.54 0.614 0.782

as fur and background (None)). We evaluated whether the
correct label is in the top-2 predicted labels and found that
the precision jumps to as high as 0.87. This result indicates
that our trained patch labeler has high confusion with pairs
of classes but more training data would help improve the
precision further. It should be noted that results for the metric
which randomly picks neurons are comparable to the four
proposed metrics, which is unsurprising as ‘none’ is one of
the classes considered while training the patch classifier.

Despite the challenges in building object attribute classi-
fiers, our results demonstrate the patches identified as impor-
tant by APPLE can be labeled accurately to help a human
understand the CNN information propagation. This is the
case even in the challenging tasks of labeling attributes of an-
imals who’s shapes and colors match the image backgrounds.
We found that the results are the same across each of our
three object classes.

Conclusion
APPLE helps people gain a deeper understanding of what
deep neural networks learn at the intermediate layers, and
why they make the conclusions that they do. While prior work
has focused on identifying important pixels that contribute
to classification, little work has explored the impact of in-
formation propagation through the network.In this work, we
contribute our algorithm, APPLE, to analyze the neuron-level
information propagation and to facilitate the understanding
of regions of interest. We contributed four different measures
of neuron importance, such as sum and variance across the
activation matrix and weight matrix of neurons.

We demonstrated that in image classification tasks, our
algorithm is able to use the measures to identify neurons
within the CNN that focus on important attributes of the
recognized object (i.e., body parts of animals). In particular,
we demonstrated that all of APPLE’s importance measures
find regions of the images that contain the object of interest.
We then used a patch classifier to label the attributes of the
object, although it did confuse similar looking features of the
bear. Currently, our approach uses one patch classifier for
each class under consideration. At first glance, it might occur
that our approach doesn’t scale easily with increased number
of classes, however it would be possible to automatically
generate the list of features for each object (e.g., using web
search) as well as crop attributes from images (e.g., using
crowd-sourcing). Manual evaluation can also be automated
by blocking out important patches and evaluating if the im-
portance correlates with the change in class score. Future
work could include constructing a universal patch dataset, im-
proving patch classifier performance using a better classifier,
more training data for a patch classifier and including context
while classifying the patch.



References
[Chollet and others 2015] Chollet, F., et al. 2015. Keras.
https://github.com/fchollet/keras.

[Dalal and Triggs 2005] Dalal, N., and Triggs, B. 2005. His-
tograms of oriented gradients for human detection. In Com-
puter Vision and Pattern Recognition, 2005. CVPR 2005.
IEEE Computer Society Conference on, volume 1, 886–893.
IEEE.

[Erhan et al. 2009] Erhan, D.; Bengio, Y.; Courville, A.; and
Vincent, P. 2009. Visualizing higher-layer features of a deep
network.

[Girshick 2015] Girshick, R. 2015. Fast r-cnn. In Proceedings
of the IEEE International Conference on Computer Vision,
1440–1448.

[Goodfellow, Bengio, and Courville 2016] Goodfellow, I.;
Bengio, Y.; and Courville, A. 2016. Deep Learning. MIT
Press. http://www.deeplearningbook.org.

[He et al. 2016] He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016.
Deep residual learning for image recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 770–778.

[Hendricks et al. 2016] Hendricks, L. A.; Akata, Z.;
Rohrbach, M.; Donahue, J.; Schiele, B.; and Darrell, T.
2016. Generating Visual Explanations. Cham: Springer
International Publishing. 3–19.

[Krizhevsky, Sutskever, and Hinton 2012] Krizhevsky, A.;
Sutskever, I.; and Hinton, G. E. 2012. Imagenet classification
with deep convolutional neural networks. In Advances in
neural information processing systems, 1097–1105.

[Li, Wang, and Sung 2008] Li, X.; Wang, L.; and Sung, E.
2008. Adaboost with svm-based component classifiers. Engi-
neering Applications of Artificial Intelligence 21(5):785–795.

[Mahendran and Vedaldi 2015] Mahendran, A., and Vedaldi,
A. 2015. Understanding deep image representations by
inverting them. In 2015 IEEE conference on computer vision
and pattern recognition (CVPR), 5188–5196. IEEE.

[Oquab et al. 2015] Oquab, M.; Bottou, L.; Laptev, I.; and
Sivic, J. 2015. Is object localization for free?-weakly-
supervised learning with convolutional neural networks. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 685–694.

[Park et al. 2016] Park, D. H.; Hendricks, L. A.; Akata, Z.;
Schiele, B.; Darrell, T.; and Rohrbach, M. 2016. Attentive ex-
planations: Justifying decisions and pointing to the evidence.
CoRR abs/1612.04757.

[Pinheiro and Collobert 2015] Pinheiro, P. O., and Collobert,
R. 2015. From image-level to pixel-level labeling with con-
volutional networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 1713–1721.

[Ranzato et al. 2006] Ranzato, M.; Poultney, C.; Chopra, S.;
and LeCun, Y. 2006. Efficient learning of sparse representa-
tions with an energy-based model. In Proceedings of the 19th
International Conference on Neural Information Processing
Systems, NIPS’06, 1137–1144. Cambridge, MA, USA: MIT
Press.

[Ribeiro, Singh, and Guestrin 2016] Ribeiro, M. T.; Singh,
S.; and Guestrin, C. 2016. "why should I trust you?": Explain-
ing the predictions of any classifier. CoRR abs/1602.04938.

[Russakovsky et al. 2015] Russakovsky, O.; Deng, J.; Su, H.;
Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.;
Khosla, A.; Bernstein, M.; et al. 2015. Imagenet large
scale visual recognition challenge. International Journal of
Computer Vision 115(3):211–252.

[Selvaraju et al. 2016] Selvaraju, R. R.; Das, A.; Vedantam,
R.; Cogswell, M.; Parikh, D.; and Batra, D. 2016. Grad-
cam: Why did you say that? visual explanations from
deep networks via gradient-based localization. CoRR
abs/1610.02391.

[Simonyan and Zisserman 2014] Simonyan, K., and Zisser-
man, A. 2014. Very deep convolutional networks for large-
scale image recognition. CoRR abs/1409.1556.

[Springenberg et al. 2014] Springenberg, J. T.; Dosovitskiy,
A.; Brox, T.; and Riedmiller, M. 2014. Striving for simplicity:
The all convolutional net. arXiv preprint arXiv:1412.6806.

[Szegedy et al. 2015] Szegedy, C.; Liu, W.; Jia, Y.; Sermanet,
P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; and
Rabinovich, A. 2015. Going deeper with convolutions. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 1–9.

[Vedantam et al. 2017] Vedantam, R.; Bengio, S.; Murphy,
K.; Parikh, D.; and Chechik, G. 2017. Context-aware captions
from context-agnostic supervision. CoRR abs/1701.02870.

[Wulfmeier, Wang, and Posner 2016] Wulfmeier, M.; Wang,
D. Z.; and Posner, I. 2016. Watch this: Scalable cost-function
learning for path planning in urban environments. In Intel-
ligent Robots and Systems (IROS), 2016 IEEE/RSJ Interna-
tional Conference on, 2089–2095. IEEE.

[Yang et al. 2016] Yang, S.; Song, Y.; Kaess, M.; and Scherer,
S. 2016. Pop-up slam: Semantic monocular plane slam for
low-texture environments. In Intelligent Robots and Systems
(IROS), 2016 IEEE/RSJ International Conference on, 1222–
1229. IEEE.

[Zeiler and Fergus 2014] Zeiler, M. D., and Fergus, R. 2014.
Visualizing and understanding convolutional networks. In Eu-
ropean Conference on Computer Vision, 818–833. Springer.

[Zeiler, Taylor, and Fergus 2011] Zeiler, M. D.; Taylor,
G. W.; and Fergus, R. 2011. Adaptive deconvolutional net-
works for mid and high level feature learning. In Computer
Vision (ICCV), 2011 IEEE International Conference on,
2018–2025. IEEE.

[Zhang et al. 2015] Zhang, F.; Leitner, J.; Milford, M.; Up-
croft, B.; and Corke, P. 2015. Towards vision-based deep
reinforcement learning for robotic motion control. arXiv
preprint arXiv:1511.03791.

[Zhou et al. 2015] Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva,
A.; and Torralba, A. 2015. Learning deep features for dis-
criminative localization. arXiv preprint arXiv:1512.04150.

[Zhu et al. 2016] Zhu, Y.; Mottaghi, R.; Kolve, E.; Lim, J. J.;
Gupta, A.; Fei-Fei, L.; and Farhadi, A. 2016. Target-driven
visual navigation in indoor scenes using deep reinforcement
learning. arXiv preprint arXiv:1609.05143.

https://github.com/fchollet/keras
http://www.deeplearningbook.org

	Introduction
	Related work
	Automatic Patch Pattern Labeling for Explanation (APPLE)
	High importance Neurons
	Extraction of Patches corresponding to neuron
	Patch classifier
	Putting it all together

	Experiments
	CNN Classifier
	Patch Classifier
	Evaluation Setup
	Results

	Conclusion

