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Abstract

Recent studies have shown that the labels collected from
crowdworkers can be discriminatory with respect to sensi-
tive attributes such as gender and race. This raises questions
about the suitability of using crowdsourced data for further
use, such as for training machine learning algorithms. In this
work, we address the problem of fair and diverse data col-
lection from a crowd under budget constraints. We propose a
novel algorithm which maximizes the expected accuracy of
the collected data, while ensuring that the errors satisfy de-
sired notions of fairness. We provide guarantees on the per-
formance of our algorithm and show that the algorithm per-
forms well in practice through experiments on a real dataset.

1 Introduction

Algorithmic decision-making is gaining popularity in many
diverse application areas of social importance. Examples
include criminal recidivism prediction, stop-and-frisk pro-
grams, university admissions, bank loan decisions, screen-
ing job candidates, fake news control, information filter-
ing(personalization) and search engine rankings etc. Re-
cently, questions were raised about the fairness of these al-
gorithms. An investigation, led by (ProPublica 2017), found
COMPAS (a popular software used by courts to predict
criminal recidivism risk) racially discriminatory. Other soft-
ware systems have also been found to be biased against
people of different races, genders and political views (Kay,
Matuszek, and Munson 2015; Bolukbasi et al. 2016; Otter-
bacher, Bates, and Clough 2017; Kulshrestha et al. 2017).
This has led to a widespread and legitimate concern about
the potential negative influence of such systems on the soci-
ety (Barocas and Selbst 2016; White House 2016). One of
the main reasons of algorithmic bias is the bias in the train-
ing datasets. In order to achieve algorithmic fairness, the is-
sue of data fairness needs to be addressed first. In many
interesting cases, data is directly or indirectly influenced
by some kind of human feedback. The influence is obvious
and direct if human assigned labels are used as a proxy for
ground truth labels. However, human feedback can also indi-
rectly influence the so-called “ground-truth” datasets (when
the labels are not human assigned but observed in reality).
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This is because the ground truth labels can only be collected
for a finite number of data points and the selection of data
points is often influenced by humans. For example, there are
no ground truth labels for recidivism of people who were
never released by the judges. In this paper, we focus only on
the direct influence of human feedback on data fairness i.e.
the case in which humans assign labels for data.

Crowdsourcing is increasingly used to collect training
data labels. Inevitably, crowdworkers have different biases,
which are then reflected in the labels collected from the
workers. A very recent study (Dressel and Farid 2018) con-
ducted on Amazon Mechanical Turk showed that the crowd-
workers were equally racially biased as COMPAS in pre-
dicting recidivism. The difference in false positive rates of
crowd predictions for white and black defendants was sig-
nificant and nearly equal to that of the predictions made by
COMPAS. The same was true for false negative rates also.
The bias didn’t change much even when the crowdworkers
were not explicitly displayed the race of the defendants.

We consider settings similar to (Dressel and Farid 2018).
Workers are asked to provide their answers (or labels) about
some tasks with unknown ground truth labels. Every task has
some non-sensitive details that are shown to the workers and
a sensitive attribute (for example, race) that is not explicitly
shown. But the sensitive attribute may potentially be corre-
lated with the non-sensitive task details. A worker inspects
the tasks assigned to her and submits labels for the tasks.
Each task is assumed to have a ground truth label but the
workers don’t have any way of accessing the ground truth.
They can only use the task details, their prior knowledge and
incomplete information from other sources to make an “ed-
ucated guess” about the ground truth. The examples of such
tasks are “Will a defendant with given personal history re-
cidivate within the next two years or not?” or “Will a candi-
date with given CV be successful in the job applied for?” or
“Is given political news item fake?”. The sensitive attributes
in these example tasks are race, gender and political group
respectively. Every worker charges a fee for answering the
assigned tasks. The requester has a budget constraint on the
amount of fees that she can pay to the workers. In this paper,
we make the following contributions:

1. We propose a novel algorithm for assigning tasks to the
workers, which optimizes the expected accuracy of labels
obtained from crowd while ensuring that the collected la-



bels satisfy desired notions of error fairness. The algo-
rithm also ensures diversity of responses by limiting the
probability of assigning many tasks to a single worker.
Our algorithm works even when the values of the sen-
sitive attribute of the tasks are unavailable or can’t used
because of ethical/legal reasons.

2. With a novel formulation of the task assignment strategy
as a probability distribution over the workers, we can cast
the optimization problem as a linear program and avoid
the use of integer programming or other graph matching
algorithms which are popular in the task assignment liter-
ature but are harder to solve exactly and analyze. This also
makes our algorithm suitable for online settings in which
the requester is not aware of the tasks in advance.

3. We use a limited number of gold tasks (tasks with known
ground-truth answers) for estimating workers’ parameters
and then optimally assign non-gold tasks to the workers.
We provide performance bounds for our algorithm and
show empirical performance on a real dataset.

2 Related Work

Empirical Studies : (Dressel and Farid 2018) find racial
discrimination in recidivism prediction tasks on Amazon
Mechanical Turk (AMT). (Otterbacher 2015a) analyzes lin-
guistic bias in labels collected through GWAP (Games
with a Purpose) on AMT. (Otterbacher 2015b) analyzes
the linguistic bias in collaboratively produced biographies.
(Hanndk et al. 2017) find discrimination in reputation
crowdsourcing systems in online marketplaces.

Proposed Solutions : In an independent and pioneering
work, (Valera, Singla, and Rodriguez 2018) consider the
problem of fairness in human decision-making tasks like
recidivism prediction, without budget and diversity con-
straints. Criminal cases with known race information arrive
in batches of known sizes and an MDP based maximum
weighted matching algorithm assigns each case to exactly
one human judge such that the overall utility from decisions
of releasing or keeping any defendant is maximized, while
ensuring demographic parity of release decisions across two
races. To the best of our knowledge this is the first and
the most recent work to consider settings somewhat simi-
lar to ours but our work differs from theirs in several ways.
We consider general crowdsourcing settings, in which sev-
eral assumptions from their model don’t hold. In particu-
lar, they assume that “true” risk scores of individual defen-
dants are known to the human judges and the case assign-
ment algorithm. In general crowdsourcing settings, one can
only hope to have an overall label distribution for the pop-
ulation. In fact, finding the label probability for individual
tasks is the very objective of crowdsourcing. Further, it is
not immediately clear how their work can be extended for
other important fairness definitions. In their model, given
true risk scores of the defendants, judges only apply differ-
ent thresholds for black and white defendants to predict re-
cidivism. The threshold parameters alone can’t capture un-
fairness measures such as unequal error rates. Even if one
does improvise the model with more parameters, it remains
an open question whether the theoretical conjectures made

in the paper are still likely. This is because the conjectures
assume that every time a judge gives a decision, the model
parameters of the judge are updated. This becomes an is-
sue with error rate parameters since the ground truth labels
are not revealed for all tasks in crowdsourcing. (Neel and
Roth 2018) consider a different but related problem of bias
resulting from adaptive data gathering (when the choice of
whether to collect more data of a given type depends on the
data already collected) and propose a differentially private
data collection process as a solution.

There is also a lot of work on task assignment in crowd-
sourcing, which doesn’t consider fairness but is related to
our work. (Tran-Thanh et al. 2014) propose a greedy knap-
sack approach to satisfy limits on budget and the number
of tasks any worker can solve. (Karger, Oh, and Shah 2014;
Ho and Vaughan 2012; Ho, Jabbari, and Vaughan 2013) con-
sider task assignment problem when workers arrive online.
(Bragg, Weld, and others 2016) propose optimal gold task
assignment when workers’ diligence change over time.

Beyond data collection, there is also a lot of recent work
on making algorithms fair and robust to bias in the training
data (Dwork et al. 2012; Hardt et al. 2016; Zafar et al. 2017,
Kusner et al. 2017; Kleinberg, Mullainathan, and Raghavan
2017) and on correcting bias in training datasets (Feldman
et al. 2015; Calmon et al. 2017). Correcting bias in a given
dataset requires modifying the feature values and/or the la-
bels in the dataset. In this paper, we aim to collect unbi-
ased dataset to begin with, relaxing the responsibility and
the overhead of such post-processing from data users (for
e.g., data scientists and machine learning engineers).

We note that several classic Al papers consider fair-
ness in different applications such as resource alloca-
tion (Bertsimas, Farias, and Trichakis 2011) and kidney ex-
change (Dickerson, Procaccia, and Sandholm 2014). Our
work vaguely resembles them in the sense that we also
propose a constrained optimization framework to balance
fairness-utility tradeoff; but the nature of utility, fairness and
application constraints are entirely different.

3 Model

Let there be a finite set of n workers and a large pool of
tasks with unknown ground truth labels. The data requester
randomly chooses tasks from the pool one by one and as-
signs each to one (or more) worker(s). The requester may
not have knowledge of all the tasks in the pool (not even the
number of tasks in the pool) in advance. A worker i charges
a constant amount of fee c; for every label she provides. The
requester has a budget constraint for the maximum expected
money to be spent on acquiring one label from a worker.

Let Z be arandom variable denoting the sensitive attribute
and Y denoting the (unknown) ground truth labels of the
tasks such that Z,Y € {0, 1}. For the tasks attempted by
a worker 7, let Y; € {0,1} denote the labels submitted by
the worker. We denote the realizations of random variables
Z,Y and Y; by lower case letters z, y and g; respectively
and will drop the subscripts for brevity when the context is
clear. We will use [n] to denote {1,2,...,n}. The workers
are modeled using their accuracy matrices as follows:



Definition 1 (Accuracy Matrices of a Worker). The accu-
racy matrices A;,, z € {0,1} of a worker i are two 2 x 2
row stochastic matrices such that, Vy, y; € {0, 1}, the entry
Ai.ly, Ui] is the probability of the worker’s label on a task
being vj; given that the sensitive attribute of the task is z and
the ground truth label is y.

The two matrices A;o and A;; define the accuracy of
the worker ¢ for tasks belonging to the two different values
of the sensitive attribute. The accuracy matrix model, also
known as the Dawid-Skene model (Dawid and Skene 1979)
in crowdsourcing literature, is strong enough to capture dif-
ferent errors (for e.g. false positive and false negative rates)
that a worker may make for tasks belonging to a given sensi-
tive attribute value. If a worker is unbiased in the sense that
her errors don’t depend on the value of sensitive attribute of
the task, her two accuracy matrices are identical.

The requester uses a probabilistic policy to assign the
tasks to workers and collects the labels from the workers.

Definition 2 (Crowdsourcing Policy). A crowdsourcing pol-
icy is an n-dimensional stochastic vector S, such that an el-
ement S[i|,i € [n] is the probability of assigning any task
to worker i, regardless of the sensitive attribute value of the
task.

Note that the requester’s policy doesn’t depend on the
value of the sensitive attribute of the task. This is a thought-
ful modeling choice to deal with the situations in which the
sensitive attribute values of the tasks may not be available. It
may be due to missing data, privacy reasons or legal/ethical
requirements of not using the sensitive attribute.

For any task, the requester randomly selects one (or
more than one) worker(s) with probabilities specified by the
crowdsourcing policy vector S and assigns the task to the se-
lected worker(s). The labels collected from the workers are
obviously not guaranteed to be error free. We can define the
accuracy matrices of the crowdsourcing policy in the same
way as we defined the accuracy matrices of workers.

Definition 3 (Accuracy Matrices of a Crowdsourcing Pol-
icy). The accuracy matrices A,, z € {0,1} of a crowd-
sourcing policy are two 2 X 2 row stochastic matrices such
that, Yy, § € {0, 1}, the entry A, [y, §| is the probability that
a crowdsourced label for a task! is 4 given that the sensitive
attribute of the task is z and the ground truth label is y.

We use the letter A to denote accuracy matrices of crowd-
sourcing policy and of workers but readers can differentiate
between the two by noting that A has an additional subscript
1 when referring to the matrix of a worker . It is easy to
see that we can express the accuracy matrices of a policy in
terms of the accuracy matrices of the workers as follows:

A=Y Sli]- A Vze{0,1} (1)
=1

"We note that the accuracy of a crowdsourcing policy can also
be defined in terms of aggregated label when multiple labels per
task are collected. But such definitions depend on specific label
aggregation algorithms used. It is sufficient in our case to assume
that the accuracy of a policy with aggregated labels is an increasing
function of this accuracy, which is a reasonable assumption.

The requester is interested in finding a crowdsourcing policy
that maximizes the expected accuracy of the collected labels
while ensuring that the data is fair, diverse and is acquired
within budget constraints.

Crowd diversity is a subjective property and is generally
defined in terms of the demographics of crowdworkers. In
this paper, we work with a given set of crowdworkers and
can’t control such a measure of diversity. For settings like
these, we define diversity as follows:

Definition 4 (5-Diverse Crowdsourcing Policy). A crowd-
sourcing policy is called (-diverse if and only if ¥V i €
[n], S[i] is upper bounded by B, where 3 is a diversity pa-
rameter such that 0 < 8 < 1.

This definition limits the influence of individual workers
on the overall crowdsourced dataset and aims to distribute
the influence across more workers.

Similar to diversity, fairness is also a subjective property.
We use some standard definitions of fairness from the ma-
chine learning literature (Hardt et al. 2016; Zafar et al. 2017;
Barocas, Hardt, and Narayanan 2018).

Definition 5 (False Positive Rate Parity). A crowdsourcing
policy, with accuracy matrices Ag and A;, is said to satisfy
false positive rate parity if and only

A0, 1] = A4[0, 1]

One can similarly define false negative rate parity, which
requires Ag[1,0] = A;[1,0].
Definition 6 (Error Rate Parity). A crowdsourcing policy,
with accuracy matrices Ay and Ay, is said to satisfy error
rate parity if and only if it satisfies false positive rate parity
and false negative rate parity, i.e.

Ao = Ay

It is easy to see that if all workers are unbiased, any
crowdsourcing policy satisfies the above fairness definitions
and one only need to select a policy that maximizes accuracy
while satisfying budget and diversity constraints. In this pa-
per, we address the general problem scenario (when workers
are not necessarily unbiased).

4 Finding Optimal Crowdsourcing Policy
Let’s first assume that the accuracy matrices of all the work-
ers are known and the requester is interested in finding the
optimal crowdsourcing policy maximizing the expected ac-
curacy under budget, fairness and diversity constraints. We
model this as a constrained optimization problem. The ob-
jective function in the minimization problem is the negative
of the expected accuracy of the policy variable S:

_E[A(S)] =
S Pz=2 Y Py =) SlilAlyy @

z€{0,1} y€{0,1} i=1

where P(Z = z) is the known prior probability that any
random task in the pool will have sensitive attribute value
equal to z and P.(Y = y) is the known prior probability
that any random task with sensitive attribute value z in the
pool will have a ground truth label equal to y.



Together with the fairness and diversity constraints, we
get the following optimization problem:

argmin  — Y P(Z=2)Y P.(Y =y)Y_ S[i]Ai[y,y]
s z€{0,1} ye{0,1} i=1

subject to Z Sli] =1

i=1

S[i] >0 ,Vieln)
SEl < B Vi€ n]
Ao[0,1] — A1[0,1] < a

— (Ao[0,1] — A1[0,1]) < «

> Sfi]-e<C
i=1
3)

The first two constraints are due to the fact that the crowd-
sourcing policy vectors are probabilistic and so, all elements
must be positive and sum to 1. The third is the diversity con-
straint as formalized in Definition 4. The forth and fifth con-
straints together are equivalent to|.4[0, 1] — A4, [0, 1]| < a.
For ae = 0, we get the exact fairness constraint (false positive
rate parity) as formalized in Definition 5. Other fairness con-
straints can also be similarly included. The last constraint is
due to the maximum expected budget (C') that can be spent
on acquiring one answer from a worker.

Estimates of Worker Accuracy Matrices

Until now, we assumed that the accuracy matrices of the
workers are known. However, in practice, we need to es-
timate them. As is common in the literature (Oleson et al.
2011), we assume that the requester has some limited num-
ber of gold standard tasks. Gold tasks are the tasks for which
the requester not only knows the sensitive attribute value z
but also the ground truth label y. We use gold tasks to esti-
mate unknown worker accuracy matrices. Estimating all the
entries of the worker accuracy matrices requires that every
worker answers some gold tasks of each “type” (the type of
a task is specified by its ground truth answer and its sen-
sitive attribute value). We assign N, tasks of every type to
each worker to estimate their accuracy matrices. The esti-

mation process is explained in the appendix. Let A4;, be the
estimate of the worker accuracy matrices A;,, Vz € {0, 1}.
The optimization problem 3 can now be written as follows,
by replacing the accuracy matrices with their estimates:

argsmin _ZP(Z:Z)ZPZ(Y:y)ZS[ﬂAiz[y7y]

=€{0.1} ve{0,1} i=1

subject to ZS[’L] =1

i=1

“

where,
A=) Sl A Vze{0,1} )
=1

This is a linear program, which can be exactly solved in
polynomial time. In practice, the simplex method (Chvatal
1983) can be used to find the optimal solution efficiently
with common optimization libraries like IBM CPLEX and
SciPy. Depending on the constraints, the cost and the accu-
racy matrices of workers, it is possible that no feasible so-
lution exists for the optimization problem. In this case, the
requester will have no choice but to relax the constraints.

We will now analyze our algorithm theoretically and em-
pirically. Readers can find a summary of steps of our com-
plete crowdsourcing algorithm in the appendix.

5 Theoretical Analysis
When worker accuracy matrices are known, our method is
guaranteed to provide the optimal solution, satisfying con-
straints. However, when estimates of the accuracy matrices
are used, two interesting questions arise:
1. Does the solution of problem 4 (which is optimal and sat-
isfies fairness constraints only according to the estimated
accuracy parameters) also satisfy fairness in reality?

2. How much does the requester lose in terms of actual ex-

pected accuracy of the policy because of using the esti-
mated accuracy parameters in optimization?

Theorem 1. With probability at least v, the solution S to
the optimization problem 4 satisfies

|4o[0,1] = A1[0,1]] < a+ 6
where

B —In(l—2/4)+m2 I~ _
5= 2\/ o, AL = ;S[Z]Azz,Vz € {0,1}

and N is number of gold tasks.

The theorem states that when we use estimates of the
worker accuracy matrices instead of the real matrices, the
obtained solution S doesn’t violate the fairness constraints
in reality by more than §, with probability at least .
Theorem 2. Assuming that the optimal solution S of prob-
lem 4 satisfies fairness constraints of problem 3 and the op-
timal solution S of problem 3 satisfies fairness constraints
of problem 4, then with probability at least ~'

ELA(S)] — ELA(S)] < 2nﬁ\/ (- %/7) + 2

2N,
where
E[AS) =Y P(Z=2) Y P.(Y =y)>_ S[ilAi:[y, ],
z€{0,1} ye{0,1} =1
EAS) =Y P(Z=2) > P.(Y =9))_ SilAi[y, ]
2€{0,1} ye{0,1} i=1

The theorem provides an upper bound on the loss in real
expected accuracy of the crowdsourcing policy, when we use
the estimated worker matrices instead of the real accuracy
matrices for optimization. Note that in both the theorems,
the bounds get better with increasing number of gold tasks.
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6 Experimental Evaluation
Datasets We use the following datasets in our experiments.

1. Broward County Dataset (ProPublica 2017) : This
dataset contains information about 7214 defendants ar-
rested in Broward County, Florida between 2013 and
2014. The information includes race of defendants among
other non-sensitive attributes such as age, prior charges
etc. The dataset also contains ground-truth whether the
defendants recidivated within 2 years or not. There are
3696 black defendants and 2454 white defendants in the
dataset and the base rate of recidivism is 51.43% among
black defendants and 39.36% among white defendants .

2. Crowd Judgment Dataset : (Dressel and Farid 2018)
randomly selected a subset of 1000 defendants from the
Broward County dataset and asked 20 random workers on
Amazon Mechanical Turk to predict recidivism for each
individual. In total, 400 workers participated in their study
and each worker submitted answers for 50 different defen-
dants. The dataset contains these crowd answers.

Experiment Outline The idea is to split the set of defen-
dants into two sets. The first set acts as the gold standard
set, which we use to estimate worker accuracy matrices.
Once we have the estimates of the worker accuracy matri-
ces, we can solve the optimization problem 4 and learn op-
timal crowdsourcing policy. We then pick non-gold defen-
dants one by one and assign it to one of the 400 workers,
randomly selected according to the policy. The workers’ re-
sponses are then compared with the ground-truth label to
evaluate fairness and accuracy of our crowdsourcing policy.

Handling Limitations of Datasets Unfortunately, none of
the two datasets alone can be used for such experiment. The
Broward County dataset contains ground truth labels but
doesn’t contain workers’ answers. On the other hand, the
Crowd Judgment dataset does contain worker answers but is
very limited for the following reasons. In this dataset, tasks
have already been assigned (randomly) to workers and for
every defendant, we have responses of only a subset of 20
workers out of all 400 workers. If the crowdsourcing policy
learned by our algorithm decides that a worker outside that
subset of 20 workers should be assigned a task, then we will
need to know the answer of that worker but the answer of
this worker is not part of the dataset. The second reason is
that every worker has submitted answers for 50 defendants,
which is sufficient for getting good estimates of the accuracy
parameters of the workers but not big enough to be further
split into gold and non-gold sets.

To overcome these limitations, we first create a bigger syn-
thetic dataset using the two real datasets as follows. We
generate synthetic answers of all the 400 workers for all
the 3696 black and 2454 white defendants in the Broward
County dataset. The answers are generated using the worker
accuracy parameters estimated from the entire Crowd Judg-
ment dataset. Note that even though this is a synthetic
dataset but none of the parameters of the dataset are syn-
thetic. The worker accuracy parameters are derived from the
entire real dataset of (Dressel and Farid 2018) and the base
dataset (Broward County dataset) is used as it is. In other
words, there is no parameter in this dataset generation pro-
cess, which can be tuned to favor any algorithm.
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Worker Costs : The datasets also don’t contain workers’
costs. We create this information in two different ways. In
the first setting, we associate a uniform cost of $1 to each
worker. In the second and more interesting setting, we prob-
abilistically associate a cost of $1 or $3. The probability of a
worker’s cost being $3 is equal to her average accuracy and
of it being $1 is equal to 1—her average accuracy. Thus, the
higher the average accuracy of a worker, the higher is the
probability that she will charge a cost of $3.

Now this complete dataset is ready to be used in the ex-
periment outlined earlier in this section. The dataset will
also be made public for reproducibility. We now compare
our approach (called ‘CrowdFDB’ in the figures) with two
baselines (called ‘Random’ and ‘Greedy’ (Tran-Thanh et al.
2014)). The baselines are described in the appendix.

Observations

Parameter 5 was set to 0.01 in all experiments. We use equal
error rate parity (Definition 6) as the desired fairness. All
results reported in the paper are averages over 100 repeated
runs. In the uniform costs settings, C' was set to $1 and in
non-uniform settings, C' = $1.5.

Uniform Costs In Figure 1, we keep the fairness con-
straint « to be fixed (0.01) and observe the effect of increas-
ing number of gold tasks (N,). Figures 1a and 1b show that
as we increase Vg, the fairness i.e. the absolute difference in
FPR (and FNR) for black and white populations, gets closer
and closer to a. In other words, the § of Theorem 1 gets
closer to 0 as expected. Moreover, the margin between our
algorithm and the baselines also increases. However, meet-
ing the fairness constraints alone is not enough. This could

also be done by a bad algorithm that collects equally wrong
labels for both white and black populations. Hence, accu-
racy of the collected labels is also an important measure.
Figure 1c shows that our algorithm has an accuracy com-
petitive to the Greedy baseline method, which is a highly
efficient baseline in the literature for accuracy optimization.
Our algorithm can achieve same level of accuracy while also
providing fairness. In Figure 2, we keep N, fixed (20) and
observe the effect of increasing value of a. As value of «
increases, the fairness constraints are more relaxed and the
algorithm can obtain better accuracy.

Non-Uniform Costs In the non-uniform costs settings, we
observe similar patterns in Figure 3 and 4. There are a few
notable differences. The accuracy of our algorithm as well as
the Greedy baseline are lower. Our algorithm doesn’t select
more accurate workers because of budget constraints and the
Greedy baseline also finds the density of the more accurate
workers comparatively lower due to their higher costs and
prefers to choose other high density workers. In this case,
our algorithm beats Greedy in not just fairness but also in
accuracy by better utilizing the available budget.

Some more experimental results, further attesting the
above trends, are discussed in the appendix.

7 Conclusions and Future Work

In this paper, we addressed the problem of data fairness in
crowdsourcing. We proposed a novel crowdsourcing algo-
rithm that learns an optimal sampling probability distribu-
tion over the available set of workers to maximize the ex-
pected accuracy of collected data, while ensuring that the



errors in the data are not unfairly discriminatory towards any
particular social group. When a limited number of gold tasks
are used to estimate worker tasks, we provide bounds on the
performance of our algorithm. Experimental analysis further
confirms the performance under different parameter settings.

While this is an important step towards achieving data
fairness in crowdsourcing, there also remain many chal-
lenges to be addressed. One particular challenge is to define
data fairness for the case of subjective tasks, which have no
ground truth labels and thus, no clear notion of errors. En-
suring fairness in subjective data collection is also likely to
create a challenging problem of lying incentives for workers.
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