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Abstract

The use of algorithmic (learning-based) decision making in
scenarios that affect human lives has motivated a number of
recent studies to investigate such decision making systems for
potential unfairness, such as discrimination against subjects
based on their sensitive features like gender or race. How-
ever, when judging the fairness of a newly designed decision
making system, these studies have overlooked an important
influence on people’s perceptions of fairness, which is how
the new algorithm changes the status quo, i.e., decisions of
the existing decision making system. Motivated by extensive
literature in behavioral economics and behavioral psychology
(prospect theory), we propose a notion of fair updates that we
refer to as loss-averse updates. Loss-averse updates constrain
the updates to yield improved (more beneficial) outcomes to
subjects compared to the status quo. We propose tractable
proxy measures that would allow this notion to be incorpo-
rated in the training of a variety of linear and non-linear clas-
sifiers. We show how our proxy measures can be combined
with existing measures for training nondiscriminatory classi-
fiers. Our evaluation using synthetic and real-world datasets
demonstrates that the proposed proxy measures are effective
for their desired tasks.

1 Introduction
The use of algorithmic (data-driven and learning-based) de-
cision making systems in domains ranging from judiciary
(recidivism risk estimation) and banking (credit ratings and
loan approval risk) to welfare (benefits eligibility) and in-
surance (accident risks) has raised numerous concerns about
their fairness. Consequently, in recent years, a number of
notions of algorithmic (un)fairness have been proposed (Pe-
dreschi, Ruggieri, and Turini 2008; Zafar et al. 2017b; Hardt,
Price, and Srebro 2016) and numerous learning mecha-
nisms have been devised to train algorithmic decision mak-
ing systems that satisfy these notions (Dwork et al. 2012;
Zafar et al. 2017c; 2017b; Hardt, Price, and Srebro 2016;
Feldman et al. 2015; Zemel et al. 2013; Pedreschi, Ruggieri,
and Turini 2008; Bechavod and Ligett 2017). These fairness
notions have focussed on both the decision outcomes as well
as the decision making process, i.e., the inputs used to make
the decisions and the objectives of the learning algorithms.

In this paper, we focus on a crucial aspect of algorith-
mic decision making systems ignored by existing studies on
fair learning namely, fairness of updates to decision making

systems. In many decision making scenarios such as bank-
ing or judiciary or insurance, a newly deployed system re-
places an already existing decision making system, be it
run by a human decision maker or an older learning model
(e.g., learning models without discrimination-awareness) or
a learning model trained over outdated training data (e.g.,
when features of users in a society evolve). Existing liter-
ature in behavioral economics and psychology shows that
peoples’ perceptions of fairness of the new decision making
system are influenced by how the decision outcomes change
from the status quo i.e., how the new outcomes differ from
the old outcomes (Kahneman, Knetsch, and Thaler 1986;
Kahneman and Tversky 1979; Urbany, Madden, and Dick-
son 1989; Bazerman, White, and Loewenstein 1995). How-
ever, current works on fair learning do not account for the
status quo when reasoning about fairness of a decision mak-
ing system.

In this work, inspired by existing literature in behavioral
economics, we formally define a notion of update fairness
namely, loss-aversively fair updates. Intuitively, our notion
of loss-averse updates accounts for the “endowment effect”
in human behavior (Kahneman, Knetsch, and Thaler 1986;
Kahneman and Tversky 1979), where an individual or a
group of users perceives the fairness of the new system based
on whether their new outcomes were more or less beneficial
than their status quo outcomes from the existing system.

We design intuitive measures for this notion that can be
incorporated into a variety of linear and non-linear classifiers
as convex constraints and be efficiently learned. A classifier
trained using our constraints would account for the existing
outcomes from the status quo classifier.

We also show that our new notion of fair update can
be easily integrated with existing mechanisms for training
non-discriminatory classifiers. For instance, when attempt-
ing to equalize rates of beneficial outcomes such as posi-
tive class acceptance rate or true positive rate across differ-
ent groups, adding our loss-averse update constraint ensures
that “no group of users is worse-off” than before. Such a
constraint may be necessary in practice when training non-
discriminatory classifiers as Bazerman et al. (Bazerman,
White, and Loewenstein 1995) point out that same “don’t
make anyone worse off’ principle likely underlines Supreme
Courts decision (Supreme Court of the United States 1989)
that firing personnel from historically advantaged groups to



achieve parity (in order to overcome past discrimination) is
prohibited.

In the rest of the paper, we first formally define our no-
tion of fair update in the context of training classifiers. We
also propose tractable and efficient mechanisms to train fair
classifiers while satisfying this practical consideration. Ex-
periments with synthetic and real-world datasets show the
effectiveness of our mechanism in enforcing this considera-
tion.

1.1 Related work

Fairness in ML. A plethora of recent studies have fo-
cused on proposing notions (Zafar et al. 2017b; Hardt,
Price, and Srebro 2016; Pedreschi, Ruggieri, and Turini
2008; Zafar et al. 2017a) and mechanisms for fairness-
aware classification (Dwork et al. 2012; Zafar et al. 2017c;
2017b; Hardt, Price, and Srebro 2016; Feldman et al. 2015;
Zemel et al. 2013; Pedreschi, Ruggieri, and Turini 2008;
Bechavod and Ligett 2017; Corbett-Davies et al. 2017;
Zafar et al. 2017a). For more discussion into these notions,
we point the interested readers to (Barocas and Selbst 2016;
Berk et al. 2017b; Zafar et al. 2017c; Romei and Ruggieri
2014). While classification has received most attention in the
area of fairness-aware machine learning, some recent work
has also focused on prediction tasks beyond classification,
such as regression (Berk et al. 2017a), ranking (Singh and
Joachims 2018; Biega, Gummadi, and Weikum 2018) and
clustering (Chierichetti et al. 2017). In this paper, we pri-
marily focus on updates to classification tasks, leaving fair-
ness of updates to regression, ranking, and clustering tasks
to future studies.

Indvidual-level vs. Group-level Fairness Notions. Fair-
ness in classification has been divided into two broad ar-
eas: individual- and group-level fairness (Dwork et al. 2012).
Loss-averse updates can be applied at both individual and
group-levels. However, in this work, we only show results at
the group-level.

Normative vs. Descriptive Notions of Fairness. Our fair-
ness consideration for updating decision making systems
has roots in normative vs. descriptive approaches in be-
havioral economics (Kahneman and Tversky 1979; Kahne-
man, Knetsch, and Thaler 1986). For example, Kahneman
et al. (Kahneman, Knetsch, and Thaler 1986) show how cer-
tain changes to an economic model that are accepted on
the normative standards might be deemed unacceptable on
the descriptive standards. Our work here is motivated by
such observations: while anti-discrimination laws (norma-
tively) prescribe how nondiscriminatory decisions ought to
be done, if people (descriptively) preceived the changes in
outcomes with the new nondiscriminatory decision system
to be too disruptively disadvantageous to them, they would
resist adopting the new system. Our notions of update fair-
ness can be thought of as addressing such practical consid-
erations.

2 Formalizing Notion of Loss-Averse Updates
In this section, we formally define a notion of fairness that
can be useful when updating algorithmic decision making
systems. Specifically, we focus on decision making tasks
centered around binary classification.

Preliminaries. In a binary classification task, given a train-
ing dataset D = {(xi, yi)}Ni=1, the goal is to learn a
function θ : Rd → {−1, 1} between the feature vectors
x ∈ Rd and class labels y ∈ {−1, 1}. For convex deci-
sion boundary-based classifiers like logistic regression and
(non)linear SVM, this task boils down to finding a decision
boundary θ∗ in the feature space that minimizes a given loss
L(θ) over D, i.e., θ∗ = argminθ L(θ). The convexity of
the loss function ensures that the optimal decision boundary
parameters can be found in an efficient manner. Then, for
a given (potentially unseen) feature vector x, one predicts
the class label ŷ = 1 if dθ∗(x) ≥ 0 and ŷ = −1 other-
wise, where dθ∗(x) denotes the signed distance from x to
the decision boundary. Without loss of generality, we con-
sider ŷ = 1 to be the beneficial (desired) label, e.g., being
granted the loan or being released on bail.

Setup. We consider scenarios where we need to update an
existing, status quo, binary classifier, whose decision bound-
ary is denoted by θsqo. We assume that the boundary of
the new classifier, θnew is learnt from the training dataset
D. The outcomes of the updated (new) classifier may dif-
fer from the status quo for many reasons such as the status
quo classifier being a human or an older (simpler) learning
model, or the status quo classifier being trained on out-dated
training data, or the status quo classifier being trained using
models without awareness of potential for discrimination.
Our notion of fair update defines the conditions in which the
changes in decision outcomes caused by an update would be
deemed as fair.

Existing Notions: Discrimination in Classification. Anti-
discrimination laws require classification outcomes are also
required to be nondiscriminatory with respect to a sensitive
feature z ∈ {0, 1}, e.g., gender, race. Most of the exist-
ing studies differentiate between the following two notions
of discrimination: statistical parity (Feldman et al. 2015;
Dwork et al. 2012)—also referred to as disparate impact, and
equality of opportunity (Zafar et al. 2017b; Hardt, Price, and
Srebro 2016)—also referred to as disparate mistreatment.
Both notions require that certain group-conditional benefi-
cial outcome rates be the same for each group, i.e.,:

Bz=0(θ) = Bz=1(θ), (1)

where the definition of the benefit function Bz depends on
the notion of discrimination under consideration.

Under the notion of statistical parity (SP) (Dwork et al.
2012; Feldman et al. 2015), the benefits function is defined
as the positive class acceptance rate (AR), i.e., the positive
class acceptance rate should be the same for both the groups.
More formally,

— SP: P (ŷ = 1|z = 0) = P (ŷ = 1|z = 1), (2)



Under equality of opportunity (EOP) notion (Hardt, Price,
and Srebro 2016; Zafar et al. 2017b), the benefit function is
defined as the true positive rate, i.e., the true positive rate
(TPR) should be the same for both the groups. More for-
mally,
— EOP: P (ŷ = 1|y = 1, z = 0) = P (ŷ = 1|y = 1, z = 1),

(3)
Note that, current notions of nondiscrimination do not take
into account status quo classifier. In the following section
we introduce a notion of updating status quo classifier.

New Notion: Loss-Averse Updates. We now formally de-
scribe a new consideration of fair updates, introduced in Sec-
tion 1. We draw inspiration from human behavior and be-
havioral economics and we consider how people might per-
ceive fairness of an updated classifier in comparison to status
quo. Specifically, any disadvantageous effect of an updated
classifier would be considered unfair. Prospect theory, pro-
posed by Kahneman and Tversky (1979), states that equal
amounts of loses result in a bigger loss in utility than the in-
crease in utility by the same amount of gains. In other words
people percieve losses much worse than gains, i.e., they are
loss-averse. Given the status quo classifier θsqo, a new clas-
sifier θnew constitutes a loss-averse update only when the
new classifier increases the beneficial outcome rates for all
groups. More formally,
Bz=k(θnew) ≥ Bz=k(θsqo), for all k ∈ {0, 1} (4)

where Bz can be any one of the benefit functions proposed
in the existing literature on nondiscriminatory classification.

3 Updating Classifiers Loss-Aversively
In this section, we devise mechanisms to update status quo
classifier, θsqo to θnew that follow the practical consider-
ations of “loss-averse updates”. We specifically focus on
training convex decision boundary based classifiers (e.g.,
logistic regression, linear and non-linear SVMs), i.e., the
classifiers that learn the decision boundary parameters by
optimizing a convex loss function L(θ).

Existing Mechanisms: Nondiscriminatory Classification.
Existing mechanisms to train nondiscriminatory classifiers
involve solving an optimization problem maximizing accu-
racy while equalizing benefits, i.e., enforcing Eq. (1), for dif-
ferent sensitive feature groups. More formally,

minimize L(θ) (P1)
subject to Bz=0(θ) = Bz=1(θ),

Constraints in Problem (P1), as operationalized in Eqs. (2)
and (3) are non-convex. However, prior studies (Zafar et al.
2017c; 2017b; Bechavod and Ligett 2017) propose tractable
convex or convex-concave proxies for enforcing the equal-
ity of benefits constraint in Eqs. (2) and (3). Borrowing
these proxies from (Zafar et al. 2017c; 2017b; Bechavod and
Ligett 2017), one can replace the equal benefits condition
with proxies as follows:

— SP:
1

|D|

∣∣∣∣ ∑
(x,z)∈D

(z − z̄)dθ(xi)

∣∣∣∣ ≤ c, (5)

— EOP:
1

|D+|

∣∣∣∣ ∑
(x,z)∈D+

(z − z̄)dθ(xi)

∣∣∣∣ ≤ c, (6)

where D+ are data points with y = 1. Here equality of
opportunity limits discrimination in true positive rates
of different groups. The covariance threshold c ∈ R+

determines the level of discrimination, with c = 0 aiming
for a perfectly fair classifier.

New Mechanism: Loss-Averse Updates. For updating the
status quo classifier, θsqo, in a nondiscriminatory and loss-
aversive manner, one can add the respective conditions to the
classifier formulation as a constraint, i.e.,

minimize L(θ) (P2)
subject to Bz=0(θ) = Bz=1(θ)

Bz=k(θ) ≥ Bz=k(θsqo), for all k ∈ {0, 1}.
The constraints in the above problem are nonconvex func-

tions of the classifier parameters θ, if B is defined in terms
of probabilities as given in Eqs. (2) and (3), for example,
this would make it very challenging to solve the resulting
problem in an efficient manner.

We used the convex proxies from prior studies (Zafar et
al. 2017c; 2017b; Bechavod and Ligett 2017) for the first
constraint as given by Eqs. (5) and (6). We propose the fol-
lowing convex proxies to approximate the new loss-averse
constraints in Problem (P2):
Under SP, when the benefit function is AR we suggest:

1

|Dz=k|
∑

x∈Dz=k

dθ(x) ≥ 1

|Dz=k|
∑

x∈Dz=k

dθsqo(x) + γ,

(7)

for all k ∈ {0, 1}, γ ∈ R+.

Under EOP, when the benefit function is TPR we suggest:

1

|D+
z=k|

∑
x∈D+

z=k

dθ(x) ≥ 1

|D+
z=k|

∑
x∈D+

z=k

dθsqo(x) + γ,

(8)

for all k ∈ {0, 1}, γ ∈ R+,

where Dz=k are the data points whose sensitive attribute
value z = k, and D+

z=k are data points in the dataset with
label y = 1 and sensitive attribute value z = k. Here, γ
controls the strength of the constraint. We pick an appropri-
ate γ using a validation set. Note that the right hand side
in Eqs. (7) and (8) represents constant terms since θsqo is
already known.

Both of the proposed proxies are convex with respect
to the optimization variables. The convexity of the proxies
(7 and 8) means that for any convex function L(θ) the
optimization problem stays convex and can be solved in an
efficient manner.

Logistic Regression: SP. We can specialize Problem (P2),
using logistic regression classifier with L-2 norm regular-
izer, SP as a notion of discrimination, given by Eq. (5), and
loss-averse constraint, given by Eq. (8), as follows:



minimize − 1

|D|
∑

(x,y)∈D

log p(y|x,θ) + λ||θ||2 (P3)

subject to
1

|D|

∣∣∣∣ ∑
(x,z)∈D

(z − z̄)dθ(xi)

∣∣∣∣ < c

1

|Dz=k|
∑

x∈Dz=k

dθ(x) ≥ 1

|Dz=k|
∑

x∈Dz=k

dθsqo(x) + γ,

for all k ∈ {0, 1}, γ ∈ R+.

Logistic Regression: EOP. Similarly, considering equality
of opportunity as a notion of nondiscrimination we can ap-
proximate Problem (P2), by adding Eqs. (6 and 8) as con-
straints to logistic loss, as follows:

minimize − 1

|D|
∑

(x,y)∈D

log p(y|x,θ) + λ||θ||2 (P4)

subject to
1

|D+|

∣∣∣∣ ∑
(x,z)∈D+

(z − z̄)dθ(xi)

∣∣∣∣ < c

1

|D+
z=k|

∑
x∈D+

z=k

dθ(x) ≥ 1

|D+
z=k|

∑
x∈D+

z=k

dθsqo(x) + γ,

for all k ∈ {0, 1}, γ ∈ R+.

4 Evaluation on Synthetic Dataset
In this section we evaluate the effectiveness “Loss-averse”
constraint (7), using a synthetic dataset on a binary classi-
fication task. We consider a well known notion of nondis-
crimination, namely statistical parity. Due to space consider-
ations, we show the results of loss-averse formulation, given
by Eq. (8), combined with equality of opportunity, using
synthetic data in Appendix A.

4.1 Dataset and Experimental Set up
We used synthetic dataset with binary ground truth class la-
bels y ∈ {+1,−1}. Each data point comprises of 2 features
besides a binary sensitive feature, i.e., z ∈ {0, 1}, where
z = 0 is the protected group. We do not use the sensitive
attribute during training.
Synthetic Dataset. For demonstrating the results of loss-
averse updates with statistical parity, given by Eq. (2), as
a notion of nondiscrimination, we used the dataset proposed
by Zafar et al. (2017c). This dataset comprises of 6000 data
points, the class labels were drawn uniformly at random.
Conditioned on the class membership, each data point was
sampled from the following distributions:

p(x|y = 1) = N([2; 2][5, 1; 1, 5]),

p(x|y = −1) = N([−2;−2][10, 1; 1, 3]).

Value of the sensitive attribute was sampled from the follow-
ing Bernoulli probability distributions:

p(z = 1) =
p(x

′ |y = 1)

p(x′ |y = 1) + p(x′ |y = −1)
,

where, x
′

= [cos(φ),− sin(φ); sin(φ), cos(φ)]x, i.e., the
rotated feature vector, x. On average there were 3280 points
in the protected group and 2720 were in non-protected
group.
Experimental Setup. The dataset is split into 70%-30%,
train-test folds. Additionally, hyperparameters are validated
using a 30% hold out set from the training data. All the
results have been averaged over 5 shuffles of the data ini-
tialized by different random seed. In order to pick the pe-
nalization parameter, λ in Problem (P3), multiplied with
the regularizer, we trained the unconstrained classifier for
λ ∈ [1e− 5, 1e− 2]. Then, we picked a value which yielded
the highest accuracy on the validation set, for a particular
shuffle of the data . We used this value of the parameter
for all the experiments on that shuffle of the data. We use
CVXPY (Diamond and Boyd 2016) library to solve all the
optimization problems.

4.2 Loss-aversively Fair Updates
In this section we experiment with Problems (P1 and P3).
First we consider statistical parity, where beneficial outcome
rates are defined as positive class acceptance rate, as a notion
of discrimination, i.e., solving Problems (P1) using SP prox-
ies. Then, we show results combining SP and loss-averse
constraints and we update θsqo with loss-averse nondiscrim-
inatory classifiers.
Training Loss-aversively Fair Classifier. We initialize θsqo
with the solution of unconstrained problem. Then, given a
value of covariance threshold c, as used in Eqs.(5 and 6),
and a range of γ, as used in Eqs.(7 and 8), we solve Prob-
lem (P3). We, then, pick the gamma values whose solutions
yield a higher benefits compared to θsqo, for all the groups,
on the validation set. In case there are multiple such values,
we pick the one whose solution yields maximum accuracy.
We then report the results on the test set.
SP. Accuracy of an unconstrained classifier, on Synthetic
dataset, is 88%, and the acceptance rates for the protected
and non-protected groups are 31% and 72%, respectively.
There is a clear disparity in acceptance rates of both the
groups. In order to remove this disparity we solve Prob-
lem (P1), replacing the first constraint with SP proxy, given
by Eq. (5). For a covariance threshold c = 0, this leads to
a classifier with an acceptance rate of 51% and 52%, for
protected and non-protected groups respectively, and an ac-
curacy of 72%.
The results for this formulation, Problem (P1) specialized
with SP, are shown in Figure (1). The x-axis is covariance
multiplicative factorm : c = m×c∗, where c∗ is the covari-
ance values of the unconstrained classifier and c is covari-
ance threshold as given in Eq.(5). Solid lines in Figure (1a)
represent the statistics of the classifiers resulting from the
solutions of this formulation. Figure (1b) shows the accura-
cies of classifiers resulting from solving this formulation in
purple colored points.
Note that: i) Figure (1b) demonstrates that as the covariance
is decreased the accuracy of the resulting, less discrimina-
tory, classifiers also decreases. ii) Figure (1a) shows that as
the covariance decreases, the discrimination also reduces.
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Figure 1: [Synthetic dataset. Enforcing statistical parity] These figures show a comparison between the solutions of Prob-
lem (P1), using SP proxies, and Problem (P3). Left panel shows the beneficial outcome rates, i.e., positive class acceptance
rates, for a classifier only enforcing SP constraint (solid lines), and a classifier additionally enforcing the “loss-averse” con-
straint (dotted lines). Right panel shows the nondiscrimination-accuracy tradeoff for both the classifiers. Enforcing “loss-averse”
constraint, defined in Eq. (7), leads to significant additional loss in accuracy for the same level of discrimination.

iii) However it should be noted that discrimination is de-
creased by reducing the acceptance rate of the non-protected
group.
Loss-Aversiveness + SP. In order to train a classifier en-
forcing loss-averse update of θsqo, Eq. (4), combined with
statistical parity, Eq (2), on the Synthetic dataset, we solve
Problem (P3). Loss-averse updates yield a classifier with ac-
curacy of 65% and acceptance rates of 80% and 86% for
protected and non-protected groups, respectively, for the co-
variance value c = 0.
The results are shown in Figure (1a) in dotted lines and in
green colored points in Figure (3b). i) The figures demon-
strate that loss-aversively fair updates yield a less discrim-
inatory classifier while increasing the benefits for both the
groups, ii) however this comes at a higher cost of accuracy.
Summary. In this section we demonstrated the effectiveness
of our proposed formulation on synthetic datasets. We illus-
trated the effectiveness of loss-aversively making the status
quo classifiers nondiscriminatory, albeit at a higher cost of
accuracy.

5 Evaluation on Real-World Dataset
In this section, we evaluate the effectiveness of our pro-
posed schemes in updating the status quo classifier, θsqo,
compliant with the “loss-aversively fair updates” consider-
ation, on real-world dataset using statistical parity as a no-
tion of nondiscrimination. We also consider another widely
used notion of discrimination, i.e., equality of opportunity,
and show loss-averse constraints combined with EOP on a
real-world dataset in Appendix B, due to space limitations.

5.1 Dataset and Experimental Setup
In this section we explain the real-world dataset used to eval-
uate our proposed considerations.
Adult Dataset. We show result for loss-aversively fair
update mechanism, introduced in section 3, using Adult

dataset (Adult 1996). Specifically, we illustrate the effec-
tiveness of Problem (P3) to train loss-aversively fair classi-
fiers, using Adult dataset. For experiments in this section, we
consider statistical parity as a notion of nondiscrimination.

The Adult Dataset consists of 45, 222 subjects and 14 fea-
tures like gender, race, educational level, etc. The classifica-
tion task is to predict whether a person earns more than 50K
USD per annum (positive class) or not (negative class). We
consider gender to be a sensitive feature for this dataset.
Experimental Setup. For the experiments conducted on the
Adult dataset we use the same data split as used for Synthetic
dataset. We also randomize the data, as well as validate the
hyperparameters in a similar manner.

5.2 Loss-Aversively Fair Updates
In this section we compare the results of Problem (P1), us-
ing SP proxies, and Loss-aversively fair updates given by
Problem (P3) using Adult dataset.
SP. On the Adult dataset, logistic regression classifier leads
to an accuracy of 84.6%. However, the classifier leads to
the beneficial outcome rates of 8% and 26% for women and
men respectively, showing a clear disparity in the beneficial
outcome rates for the two groups. Next, using the method
of Zafar et al. (Zafar et al. 2017c), we train a nondiscrimi-
natory classifier while reducing the value of the covariance
threshold c, (Eq. (5)), towards 0. The results are shown in
solid lines in Figure (2a) and in purple colored points in
Figure (2b). The least discriminatory classifier in this case
achieves the beneficial outcome rates of 13% and 20% for
women and men respectively, with an accuracy of 83.7%.
We notice that the discrimination is reduced by lowering the
beneficial outcome rates for men, which leads to a violation
of “loss-averse” consideration.
Loss-Aversiveness + SP. We next train classifier with the
loss-averse constraints (Eq. (7)) combined with SP, i.e.,
solve Problem. (P3). The least discriminatory classifier in
this case achieves the beneficial outcome rates of 24% and
27% for women and men, respectively, while achieving an
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Figure 2: [Adult dataset. Enforcing statistical parity] Left panel shows the beneficial outcome rates, i.e., positive class accep-
tance rates, for a classifier only enforcing SP constraint, i.e., solution of Problem (P1) using SP proxies (solid lines), and a
classifier additionally enforcing the “loss-averse” constraint, i.e., solution of Problem (P3) (dotted lines). Right panel shows the
nondiscrimination-accuracy tradeoff for both the classifiers. Enforcing “loss-averse” constraint, defined in Eq. (7), leads to a
significant additional loss in accuracy for the same level of discrimination.

accuracy of 80.8%. However, the reduction in discrimina-
tion is achieved by only increasing the beneficial outcome
rate for both groups. Results are shown in Figures (2a and
2b), in dotted lines and green colored points, respectively.
The figure shows the beneficial outcome rates for (i) a clas-
sifier with statistical parity constraint and (ii) a classifier
with loss-averse and statistical parity constraints. The figure
shows that at successively decreasing values of the covari-
ance threshold c, while classifier (i) achieves lower discrim-
ination by increasing benefits for one group and decreas-
ing them for the other, classifier (ii) does so by only in-
creasing benefits for both the groups. Figure 2b shows the
nondiscrimination-accuracy tradeoff achieved by both the
classifiers. The figure demonstrates that, as expected, clas-
sifier (ii) incurs a much higher cost in terms of accuracy for
the same level of discrimination due to the additional loss-
averse constraint.
Summary. Our proposed methodology, in Section 3, suc-
cessfully enforces the loss averse constraint while updating
the status quo classifier, θsqo, to a nondiscriminatory classi-
fier. However, enforcing these constraints could be at a sig-
nificant additional cost in terms of accuracy.

6 Concluding Discussion
A number of recent works have explored various aspects
of fairness related to algorithmic decision making. In this
paper, we focus on an aspect of decision making that cru-
cially affects people’s fairness perceptions, yet has been
overlooked: it is the fairness of updating decision making,
i.e., how the decision outcomes change when updating a de-
cision making system.

Based on observations in behavioral economics and psy-
chology, we note that any “disadvantageous” changes in out-
comes to individual subjects or groups of subjects would be
perceived as unfair. Accordingly, we propose a complemen-
tary notion of update fairness that we call loss-averse up-
dates. Loss-averse updates try to constrain updates to only

yield more advantageous (more beneficial) outcomes com-
pared to status quo.

In this work, we formalize this notion in the context of
classification tasks. We proposed measures that would allow
these notions to be incorporated in the training of any convex
decision-boundary based classifiers (like logistic regression
or linear/non-linear SVM) as convex constraints. We also
show how this notion can be combined with prior notions
and measures of non-discrimination in classification. Our
evaluation using synthetic and real-world datasets demon-
strates the benefits of loss-averse updates in practice.

Our work here also opens up a number of new and in-
teresting research directions. The motivation behind our no-
tions of fair updates generalize to any algorithmic decision
making scenario that affects people’s lives including search
and recommender algorithms such as Google’s search, Face-
book’s NewsFeed, Amazon’s product recommendations or
market-matching algorithms like Uber’s rider-driver match-
ing algorithms. Exploring how our notion loss-averse up-
dates can be applied to these more complex algorithmic de-
cision making scenarios (beyond binary classification) re-
mains an open challenge.
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A Evaluation on Synthetic Dataset: EOP
In this section we will present the “loss-averse” fairness
results combined with equality of opportunity, using syn-
thetic dataset. We show the results of the optimization Prob-
lem (P4).

A.1 Dataset and Experimental Setup
In this section we explain the synthetic dataset used for
demonstrating the loss-averse consideration and the exper-
imental setup used to solve the optimization Problem (P4).
Synthetic Dataset. Each data point comprises of 2 features
apart from the sensitive attribute. Each data point also has
a binary ground truth label. For equality of opportunity, as
given by Eq. (3), we are considering true positive rates as a
notion of benefit. To demonstrate the results of fair updates
combined with EOP, we use a synthetic dataset proposed
by Zafar et al. (2017b), except that we flip the ground truth
labels in order to have a disparity in the false negative rates
instead of the false positive rates. We generated 16000 data
points with the probability distributions of the features given
as follows:

p(x|z = 0, y = 1) = N([2; 2][3, 1; 1, 3])

p(x|z = 1, y = 1) = N([2; 2][3, 1; 1, 3])

p(x|z = 0, y = −1) = N([1; 1][3, 3; 1, 3])

p(x|z = 1, y = −1) = N([−2;−2][3, 1; 1, 3])

Both, class labels, y, and value of the sensitive attribute, z,
were sampled uniformly at random.
Experimental Setup. We use the same data split and
method of validating the hyperparameters as explained in
section 4.

A.2 Loss-Aversively Fair Updates
In this section we show the results of Problem (P1), using
EOP as a notion of nondiscrimination. We also show results
for the loss-averse formulation combined with EOP, given
by Problem (P4).
EOP. An unconstrained classifier trained on Synthetic
dataset yields an accuracy of 86% and true positive rates
(TPRs) of 94% and 77% for non-protected and protected
groups, respectively. To equalize the TPRs we solve Prob-
lem (P1) using proxies for EOP given in Eq. (6).
These results are show in Figure (3a) in solid lines and Fig-
ure (3b) in purple colored points. i) In order to reduce dis-
crimination, this formulation yields a classifier which low-
ers the TPR of the non-protected class to 72% and raises the
TPR of the protected group to 79%, for covariance threshold
c = 0, while achieving an accuracy of 74%. ii) Figure (3a)
shows the limitation of equality of opportunity proxy pro-
posed by Zafar et al. (Zafar et al. 2017b), as it achieves a
lower discrimination for higher value of the covariance.
Loss-Aversiveness + EOP. To avoid lowering the benefits
for any group while reducing discrimination, we solve the
Problem (P4). We encountered some issues in convergence
for some values of covariance factor, specifically smaller
ones. Out of 7 random seeds that we tried we find the re-
sults for all covariance factors for only 5 seeds, we report

the average of these results. One reason for the lack of con-
vergence could be that a very high base TPR might make it
difficult to find a nondiscriminatory classifier.

For covariance threshold c = 0, this formulation leads
to a classifier whose true positive rates are 95% and 99%
for non-protected and protected groups, respectively, with
an accuracy of 64%.
We show these results in Figure (3a) in dotted lines and Fig-
ure (3b) in green colored crosses. i) These figures illustrate
the effectiveness of the loss-averse formulation, as the re-
sulting classifiers achieve nondiscrimination by increasing
TPR for both groups, ii) however this results in a significant
drop in the accuracy.

B Evaluation on Real-World Dataset: EOP
In this section we will present the “loss-averse” fairness re-
sults combined with equality of opportunity, using a real-
world dataset.

B.1 Dataset and Experimental Setup
In this section we explain the dataset and the experimental
setup. We show result of Problem (P1), with EOP as a no-
tion of nondiscrimination, as well as Problem (P4), which
combines EOP and loss-averse constraints.
SQF Dataset. For experiments in this section we consider
NYPD SQF dataset (sqf 2017). The NYPD SQF dataset
consists of pedestrians who were stopped in the year 2012
on the suspicion of having a weapon. The task is a binary
prediction task which indicates whether (negative class) or
not (positive class) a weapon was discovered. For our analy-
sis, we consider the race to be the sensitive feature with val-
ues African-American and white. After balancing the classes
and considering same features as Goel et al. (Goel, Rao, and
Shroff 2015), with the exception that we exclude the highly
sparse features ‘precinct’ and ‘timestamp of the stop’, we
obtain 5,832 subjects and 19 features.
Experimental Setup. We used similar experimental setup
as explained in section 4.

B.2 Loss-Aversively Fair Updates
In this section we show the results of Problem (P4), which
enforces EOP and loss-averse constraints and compare them
with the results of Problem (P1), which only enforces EOP
using the proxy given by Eq. (6), on NYPD SQF dataset.
EOP. With equality of opportunity constraint, where ben-
eficial outcome rates are defined in terms of true positive
rate, we experiment with NYPD SQF dataset. Unconstrained
logistic regression on SQF yields an accuracy of 74.4%,
while the beneficial outcome rates are 69% and 82% for
Whites and African-Americans, respectively. Least discrim-
inatory classifier, trained with c = 0, given in constraint
Eq. (6), yields benefits of 72% and 76% for Whites and
African-Americans, respectively, while achieving an accu-
racy of 71.4%. Similar to the previous cases, this classifier
also achieves lower discriminations by raising the benefits
for one group while increasing them for the other group.
Loss-Aversiveness + EOP. Next, we combine the nondis-
crimination constraint with the loss-averse constraint, given
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Figure 3: [Synthetic dataset. Enforcing equality of opportunity] Left panel shows the beneficial outcome rates, i.e., true pos-
itive rates, for a classifier only enforcing EOP constraint (solid lines) and a classifier additionally enforcing the “loss-averse”
constraint, given in Eq. (8), is shown in dotted lines. Right panel shows the nondiscrimination-accuracy tradeoff for both the
classifiers.
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Figure 4: [SQF dataset. Enforcing equality of opportunity] Left panel shows the beneficial outcome rates, i.e., true positive rates,
for a classifier only enforcing nondiscrimination constraint (solid lines) and a classifier additionally enforcing the “loss-averse”
constraint, given in Eq. (8), is shown in dotted lines. Right panel shows the nondiscrimination-accuracy tradeoff for both the
classifiers.

by Problem (P4), in order to update θsqo. A least dis-
criminatory loss-averse classifier trained on NYPD SQF
dataset yields an accuracy of 71% and benefits of 84% and
81% for African-Americans and White, respectively. Fig-
ure 4a shows the beneficial outcome rates for (i) a classi-
fier with only nondiscrimination constraints and (ii) a loss-
averse classifier with nondiscrimination constraints. Again,
we notice that classifier (ii) removes discrimination by only
increasing the beneficial outcome rates whereas classifier
(i) does so by increasing benefits for one group and de-
creasing them for the other. Finally, the comparison of
nondiscrimination-accuracy tradeoff in Figure 4b shows no
significant difference between both the classifiers.


