
A Formal Approach to Explainability

Lior Wolf1,2 Tomer Galanti2 Tamir Hazan3

1Facebook AI Research
2The School of Computer Science, Tel Aviv University

3Technion

Abstract

We regard explanations as a blending of the input sample and
the model’s output and offer a few definitions that capture
various desired properties of the function that generates these
explanations. We study the links between these properties and
between explanation-generating functions and intermediate
representations of learned models and are able to show, for
example, that if the activations of a given layer are consistent
with an explanation, then so do all other subsequent layers. In
addition, we study the intersection and union of explanations
as a way to construct new explanations.

Introduction
Machine learning is often concerned with tacit knowledge,
and tacit knowledge leads to black box models. Given a
learned model, one cannot “crack it open” in the hope to
understand all of the internal nuts and bolts. Explaining the
model often relies, instead, on communicating, in a way that
is understandable to humans, an internal state of the model
during computation.
An explanation process, therefore, has three components: the
input, the model’s output for that input, which needs to be
justified, and an internal state of the model. The explanation
itself combines the input and the output into a joint sample
that should be understandable by human users. The explain-
ing function (EF) generates these explanations, based on the
two inputs, and is intimately tied to the model it explains.
We can expect, therefore, that the generated explanations are
linked to internal states of the model.
For example, consider a mapping from images to labels of
objects. The explanation often takes the visual form of an
image, where the predicted object is highlighted and the
features related to the label are emphasized, see, e.g., (Zeiler
and Fergus 2014). The algorithmic way to explain, is to
generate this hybrid image from the internal representation
of the black-box model. Another form of explanation is a
textual one (Hendricks et al. 2016), and describes features
that belong to the recognized class. For example, “[this is
an image of a broccoli since] it is green, has a flowering
head, and a thick stem with small leaves”, where the part in
brackets is the label, but not the explanation. This explanation

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

is both a function of the input image (describes what can be
seen and where) and the label (contains known properties of
broccolis).
We provide a formal framework that captures various desider-
ata of explanations, among which are: consistency between
an internal model’s state and the generated explanation, ex-
plainability of an internal state, validity of an explanation,
and its completeness.
Our main results link various aspects of the properties. For
example, a valid explanation has to be complete. We also
study the specific case of explaining, using the gradient of the
loss, the predictions of multiclass neural networks and show
that the explanation is linked to the learned representation.
Lastly, we study the intersection and unions of explanations,
as a way to create new explanations by combining existing
ones.

Settings
We describe a few fundamental concepts in a way that is
less formal than what is presented in the subsequent sections.
An illustration of the main components of our framework is
given in Fig. 1.
What do we want to explain? Given a function h : X → Y
from the input domain X to the output domain Y , we would
like to explain the output h(x) for some input x ∈ X . h is
typically a learned model.
What is an explanation? An explanation is a blending of
the input and the output. An explanation function (EF for
short) g : X × Y → G maps x ∈ X and y ∈ Y to g(x, y),
which is the explanation for (x, y) in the blended domain G.
Hopefully, the elements of domain G are understandable to
humans. However, this part is not amendable to formalization.
Consistent representation: Given a function h : Rn → Y
of the form h = c ◦ f , where f is some representation of
the input and c a classifier on top of it, we would like to
discuss the link between f and an EF g. We say that f is
consistent with respect to an EF g, if for all x1, x2 ∈ X , such
that: |g(x1, h(x1))− g(x2, h(x2))| ≤ ε, we have: |f(x1)−
f(x2)| ≤ β(ε).
Explainable representation: This definition is similar to
consistency, with a reversed implication. We say that f is
explainable with respect to the EF g if for all x1, x2 ∈ X ,
such that: |f(x1) − f(x2)| ≤ ε, we have: |g(x1, h(x1)) −
g(x2, h(x2))| ≤ γ(ε).

x ∼ D

y(x)

f(x)

g(x, h(x))

h(x)
cf

y

Figure 1: The main components of our framework. The EF
g is a function of input x and the models’ label h(x), which
approximates the target function y. h is a composition of
some representation f and a classifier c. Note that g should
generate explanations for a specific h and is not generic.

Equivalence between an EF and a representation: A rep-
resentation f is equivalent to an EF g, if it is both consistent
with it and explainable by it.
Valid explanation: An EF g is valid, if there exists a func-
tion t, such that the model’s label is predictable from the
explanation t(g(x, h(x))) ≈ h(x).
Complete explanation: We say that an EF g is complete in
the context of a model h, if there is no information left in
the input x that is relevant to h, which is independent of the
information in g(x, h(x)). If we define as ḡ(x, h(x)) all the
information that is the part of x but which has no information
on g(x, h(x)), then g is complete if there is no function s
such that s(ḡ(x, h(x))) ≈ h(x).
Intersection and Union of EFs: Given a model h :
Rn → Y and two EFs g1, g2, the intersection between
them is a representation u(x, h(x)) such that we can
write r1(g1(x, h(x))) = (e1(x, h(x)), u(x, h(x))) and
r2(g2(x, h(x))) = (e2(x, h(x)), u(x, h(x))), where r1, r2
are invertible transformations and e1 is the part of g1 that is
independent of g2 (and vice versa for e2). The union between
them is defined as (e1(x, h(x)), u(x, h(x)), e2(x, h(x))).

A Formal Model

In this section, we present our formal model of explainability.
The sample space Z := X × Y , where X ⊂ Rn is the
inputs space and Y is the outputs space. For instance, in
binary classification, Y = {±1}, in multi-class classification
Y = {1, . . . ,K} := [K] for some K ∈ N, and in regression,
Y = R. In addition, there is an unknown target function
y : Rn → Y that is being learned and a hypothesis class H
of models h : Rn → Y from which the learning algorithm
selects an approximation of the target function y. We denote
by D the distribution of data samples in X .
We consider a family of EFs G , and each EF g ∈ G is a
mapping g : Rn × Y → G. Here, G is a set of possible
explanations. We do not aim to show how to compute an
explanation g(x, h(x)). Instead, we focus on providing useful
terminology to understand the properties of EFs.

Terminology and notations Before we present our main
results, we recall a few technical notations. First, throughout
this manuscript, we will assume that D is supported by X ,
which is assumed, for the purpose of simplifying entropy and
mutual-information based arguments, to be a discrete set. We
also assume that all logarithms are base 2. The image of a
function f : X 1 → X 2 is denoted by f(X 1). We denote by,
` : Z → R a loss function. Typically, in binary classification,
we have the zero-one loss, `(y1, y2) = 11[y1 6= y2] and in
regression, we often employ the L1 loss |y1 − y2|1 or the
L2 loss |y1 − y2|2. Here, 11[b] is an indicator of a boolean
variable, b, being true, i.e., 11[true] = 1 and 11[false] = 0.
We recall the classical information theoretic notations
from (Cover and Thomas 2006): the expectation and prob-
ability operators symbols E,P, the Shannon entropy (dis-
crete or continuous) H(X) := −EX [logP[X]], the con-
ditional entropy H(X|Y) := H(X,Y) − H(Y) and the
(conditional) mutual information (discrete or continuous)
I(X;Y |Z) := H(X|Z) − H(X|Y,Z). For a given value
p ∈ [0, 1], we denote,H(p) = −p log(p)−(1−p) log(1−p).

Properties of EFs
We provide formal definitions to the various properties men-
tioned in the Settings Section. A representation of the input
is a function f : X → Rd (for some d > 0). In most cases,
we will assume that f is a sub-architecture of our mapping
h : Rn → Y . Specifically, we would consider h to be a
composite function that is built in layers h = pk ◦ · · · ◦ p1,
where each layer pi is a function pi : Rn

i−1 → Rn
i

(for
some k, ni ∈ N, n0 being the input dimension n and
i ∈ {1, 2 . . . , k}). In this case, f would contain the first
m layers f = pm ◦ · · · ◦ p1 and c would contain the k −m
top layers: c = pk ◦ · · · ◦ pm+1.

Definition 1 (Consistent Representation). Let h = c◦f ∈ H
be a model, g : Z → G an EF and β : (0,∞)→ [0,∞). We
say that f is a β(ε)-consistent representation with respect to
g, if for any ε ∈ (0,∞) and x1, x2 ∈ X , we have:

|g(x1, h(x1))− g(x2, h(x2))| ≤ ε
=⇒ |f(x1)− f(x2)| ≤ β(ε)

(1)

Definition 2 (Explainable Representation). Let h = c ◦ f ∈
H be a model and g : Z → G an EF. For a given function
γ : (0,∞) → (0,∞), we say that f is a γ(ε)-explainable
representation with respect to g, if for any ε ∈ (0,∞) and
x1, x2 ∈ X , we have:

|f(x1)− f(x2)| ≤ ε
=⇒ |g(x1, h(x1))− g(x2, h(x2))| ≤ γ(ε)

(2)

Additionally, for a given function γ : (0,∞) × (0,∞) →
(0,∞), we say that f is second-order γ(ε0, ε1)-explainable
with respect to g, if for any ε0, ε1 ∈ (0,∞) and x1, x2 ∈ X ,
we have:

|f(x1)− f(x2)| ≤ ε0 and
∣∣∣∂f(x1)

∂x1
− ∂f(x2)

∂x2

∣∣∣ ≤ ε1
=⇒ |g(x1, h(x1))− g(x2, h(x2))| ≤ γ(ε0, ε1)

(3)

Definition 3 (Equivalence between a Representation and an
EF). Let h = c ◦ f ∈ H be a model, g : Z → G an EF
and β, γ : (0,∞) → [0,∞). We say that f is (β(ε), γ(ε))-
equivalent to g, if it is β(ε)-consistent and γ(ε)-explainable
with respect to g.

Definition 4 (Valid EF). Let h ∈ H be a model, g : Z → G
an EF, ε0 > 0 a fixed constant and x ∼ D. We say that g is
ε0-valid with respect to h, if there is a function t : G → Y
that satisfies:

Ex[`(t(g(x, h(x))), h(x))] ≤ ε0 (4)

Definition 5 (Complete EF). Let h ∈ H be a model, g :
Z → G an EF and x ∼ D. Let α, ε > 0 be two constants.
We say that g is (ε, α)-complete with respect to h, if every
function ḡ : X → Rd, such that, I(g(x, h(x)); ḡ(x)) ≤ ε and
function s : Rd → Y , we have:

Ex[`(s(ḡ(x)), h(x))] ≥ α (5)

Linking Representations and EFs
The following theorem states that if an internal representation
of a layered model h is β(ε)-consistent with an EF, then,
under mild conditions, downstream layers are also consistent
with the specified EF.

Theorem 1. Let h = pk ◦ · · · ◦p1 : Rn → Y be a model and
g : Z → G an EF. Assume that fi := pi ◦ · · · ◦ p1 is β(ε)-
consistent with respect to g, for some i ∈ {1, . . . , k}. Assume
that pr is a lr-Lipschitz function for every r ∈ {i+ 1, . . . , j}.
Then, fj := pj ◦ · · · ◦ p1 is β̂(ε)-consistent with respect to g,
for β̂(ε) := β(ε) ·

∏j
r=i+1 lr.

Proof. Assume that fi is β(ε)-consistent for some i ∈
{1, . . . , k}. Let x1, x2 ∈ X be two inputs, such that,
|g(x1, h(x1)) − g(x2, h(x2))| ≤ ε. Then, for every j ∈
{i, . . . , k}, we have:

|fj(x1)− fj(x2)|
=|pj ◦ · · · ◦ pi+1 ◦ fi(x1)− pj ◦ · · · ◦ pi+1 ◦ fi(x2)|

≤
j∏

r=i+1

lr|fi(x1)− fi(x2)| ≤ β(ε) ·
j∏

r=i+1

lr = β̂(ε)

(6)

Since each pr is a lr-Lipschitz continuous function for every
r ∈ {i+ 1, . . . , j}.

One implication of this result is that if a layer of a neural
network model h is consistent with an explanation g, then
h itself is also consistent, i.e., in the case where any of the
layers of h is consistent with g, then if g(x, h(x)), which is a
function of h(x) as well as of x, does not change much when
replacing x with x′, then h(x) and h(x′) are similar.
The following theorem deals with upstream layers: under
mild assumptions, if f is an explainable representation, that
is obtained as a layer of a neural network model h, then so
are the previous layers in this network.

Theorem 2. Let h = pk ◦ · · · ◦ p1 : Rn → Y be a model
and g : Z → G an EF. Assume that fi := pi ◦ · · · ◦ p1 is
γ(ε)-explainable with respect to g, for some i ∈ {1, . . . , k}.

Assume that pr is a lr-Lipschitz function for every r ∈ {j +
1, . . . , i}. Then, fj := pj ◦ · · · ◦ p1 is γ̂(ε)-explainable with

respect to g, for γ̂(ε) := γ
(
ε ·
∏i
r=j+1 lr

)
.

Proof. Assume that fi is γ(ε)-explainable for some i ∈
{1, . . . , k}. Let x1, x2 ∈ X be two inputs, such that,
|fj(x1)− fj(x2)| ≤ ε. Then,

|fi(x1)− fi(x2)|
=|pi ◦ · · · ◦ pj+1 ◦ fj(x1)− pi ◦ · · · ◦ pj+1 ◦ fj(x2)|

≤
i∏

r=j+1

lr|fj(x1)− fj(x2)| ≤ ε ·
i∏

r=j+1

lr

(7)

Since each pr is a lr-Lipschitz continuous function for every
r ∈ {j + 1, . . . , i}. Therefore, since fi is γ(ε)-explainable
with respect to g, we have:

|g(x1, h(x1))− g(x2, h(x2))| ≤ γ

ε · i∏
r=j+1

lr

 (8)

Note that an immediate implication is that if a representation
is explainable by g, then so is the input x itself.

A Specific Case Study
We next treat a specific case, which is the conventional multi-
class classification approach for deep neural networks, cou-
pled with the iconic image-based explanation that is given by
the derivative of the output neuron associated with the pre-
dicted label by the input. In this case, the model predicts the
label based on an arg max of multiple 1D linear projections
(mi, i being the index of the label) of the activations of the
penultimate layer p(x) for some input x. The explanation of
the prediction h(x) is then given as the matrix derivative of
(m>h(x) · p(x)) by the input x.
The following theorem states that if our model is of the form
h(x) = arg maxi∈Y (m>i · p(x)) and our EF has the form

g(x, h(x)) =
∂(m>h(x)·p(x))

∂x , where p = c ◦ f such that c, f
and the derivative of c are Lipschitz continuous functions,
then, f is explainable with respect to g.

Theorem 3. Let Y = [K] and h : Rn → Y a model of the
form, h(x) = arg maxi∈Y m

>
i · p(x), where p : Rn → Rd

and mi ∈ Rd, for i ∈ [K]. Let g(x, h(x)) =
∂(m>h(x)·p(x))

∂x
be an EF. Assume that for all i ∈ [K], p = c ◦ f , such
that: c, ∂c(x)∂x , ∂p(x)∂x and f are Lipschitz continuous functions.
Additionally, assume that: ∀i 6= j ∈ [K], x ∈ X : m>i 6=
m>j and ∀x ∈ X : |p(x)| ≥ ∆, for some constant ∆ > 0.
Then, f is second-order O (ε0 + ε1)-explainable with respect
to g.

Proof. Assume that for all i ∈ [K]:

|f(x1)− f(x2)| ≤ ε0 and
∣∣∣f(x1)

∂x1
− f(x2)

∂x2

∣∣∣ ≤ ε1 (9)

Then, since each c is a Lipschitz continuous function, there
is a constant l1, . . . , lK > 0, such that for all i ∈ [K] and
x1, x2 ∈ Rn:

|m>i · p(x1)−m>i · p(x2)|
=|m>i | · |p(x1)− p(x2)| ≤ l · |m>i | · ε0

(10)

For any small enough ε0 > 0, we have:

l · max
i∈[K]

|m>i | · ε0 < min
i 6=j
|m>i −m>j | ·∆/2 (11)

Since ∀i 6= j ∈ [K], x ∈ X : |p(x)| ≥ ∆, we have:

|m>i · p(x)−m>j · p(x)| ≥ min
i 6=j
|m>i −m>j | ·∆ > 0 (12)

In this case, if h(x1) = i, then, for all j ∈ [K], such that
j 6= i, we have:

m>i · p(x2)−m>j · p(x2)

≥m>i · p(x1)− |m>i · p(x1)−m>i · p(x2)|
−m>j · p(x2)− |m>j · p(x1)−m>j · p(x2)|

≥min
i 6=j
|m>i −m>j | ·∆− 2l · max

i∈[K]
|m>i | · ε0 > 0

(13)

Therefore, we conclude that: h(x1) = h(x2) = i. Thus,

|g(x1, h(x1))− g(x2, h(x2))|

=
∣∣∣∂(m>h(x1)

· p(x1))

∂x1
−
∂(m>h(x2)

· p(x2))

∂x2

∣∣∣
=
∣∣∣∂(m>i · p(x1))

∂x1
− ∂(m>i · p(x2))

∂x2

∣∣∣
=|m>i | ·

∣∣∣∂p(x1)

∂x1
− ∂p(x2)

∂x2

∣∣∣
=
∣∣∣∂c(f(x1))

∂f(x1)
· ∂f(x1)

∂x1
− ∂c(f(x2))

∂f(x2)
· ∂f(x2)

∂x2

∣∣∣

(14)

Since c and f are Lipschitz continuous functions, we have:

|g(x1, h(x1))− g(x2, h(x2))|

=O
(∣∣∣∂f(x1)

∂x1
− ∂f(x2)

∂x2

∣∣∣)
+ O

(∣∣∣∂c(f(x1))

∂f(x1)
− ∂c(f(x2))

∂f(x2)

∣∣∣)
(15)

Since ∂c(u)
∂u is also a Lipschitz continuous function, we have:

|g(x1, h(x1))− g(x2, h(x2))|
=O (ε1 + |fi(x1)− fi(x2)|) = O (ε0 + ε1)

(16)

Validity and Completeness
The next result shows that if an EF is valid, then it is also
complete. The intuition behind this result is, if we are able to
recover h(x) from ḡ(x) and from g(x, h(x)), then, ḡ(x) and
g(x, h(x)) cannot be independent of each other.

Theorem 4 (Valid =⇒ Complete). Let h : Rn → Y be
a model, g : Z → G an ε0-valid EF for some constant
ε0 ∈ (0, 0.5) and x ∼ D. Assume that Y = {±1} and
denote, p := P[h(x) = 1]. Then, g is (ε, α)-complete with

respect to h, with α :=

√
1+H(p)(H(p)−ε−2√ε0)−1

H(p) and any
ε > 0 that satisfies, H(p) > ε + 2

√
ε0. In particular, if

p = 1/2, we have: α =
√

2− ε− 2
√
ε0 − 1.

Proof. Let ḡ : X → Rd be a function, such that,
I(ḡ(x); g(x, h(x))) ≤ ε. Since g(x, h(x)) is ε0-valid, there
is a function t : G→ Y , that satisfies:

P[t(g(x, h(x))) 6= h(x)]

=Ex[`(t(g(x, h(x))), h(x))] ≤ ε0 < 1/2
(17)

By I(X; f(Y)) ≤ I(X;Y), for every function f , we have:

I(ḡ(x); t(g(x, h(x)))) ≤I(ḡ(x); g(x, h(x))) ≤ ε (18)

By Lem. 3 in the Appendix,

|I(ḡ(x);h(x))− I(ḡ(x); t(g(x, h(x))))|
≤H(P[t(g(x, h(x))) 6= h(x)])

(19)

Therefore, by Lem. 4, we have:

I(ḡ(x);h(x)) ≤ ε+H(P[t(g(x, h(x))) 6= h(x)])

≤ ε+ 2
√
ε0

(20)

Next, we assume that H(q) > ε + 2
√
ε0, where p =

P[h(x) = 1]. Let α :=

√
1+H(p)(H(p)−ε−2√ε0)−1

H(p) and
assume by way of contradiction that there is a function
s : Rd → Y , that satisfies: Ex[`(s(ḡ(x)), h(x))] < α. Then,
by Lem. 2 in the Appendix, we have:

I(ḡ(x);h(x)) > (1− α)H(p)−H(α)

≥ (1− α)H(p)− 2
√
α

(21)

We conclude that:

(1− α)H(p)− 2
√
α < ε+ 2

√
ε0 (22)

finally, by the quadratic formula, we arrive at a contradiction

for α =

√
1+H(p)(H(p)−ε−2√ε0)−1

H(p) . Therefore, we conclude
that, g(x, h(x)) is ε-complete.

EF Operators
We next study the arithmetic of explanations. The practical
utility of this is left for future research. However, we can
imagine that by combining elementary explanations to com-
plex ones and by intersecting these complex explanations,
one can algorithmically construct explanations.
Definition 6 (Intersection and Union of Random Variables).
Let x ∼ D and f1 : X → X 1 and f2 : X → X 2 are two
functions. We say that the random variables f1(x) and f2(x)
ε-intersect, if there are two invertible functions r1 : X 1 → V1

and r2 : X 2 → V2, such that, r1(f1(x)) = (e1(x), u(x))
and r2(f2(x)) = (e2(x), u(x)), where I(ei(x); fj(x)) ≤ ε
(for any i 6= j ∈ {1, 2}). We call the random variable u(x),
the ε-intersection of f1(x) and f2(x). In addition, we call
(e1(x), u(x), e2(x)) the ε-union of f1(x) and f2(x).

By Lem. 6 in the appendix, the intersection and union of two
random variables f1(x) and f2(x) are unique, up to invertible
transformations.
The following results show that the intersection of two EFs,
one of which is valid and the other complete, is a valid EF.
Theorem 5. Let h : Rn → Y be a model, g1, g2 : Z → G
two EFs and ε, ε0, α > 0 three constants. Assume that Y =
{±1}, g1(x, h(x)) and g2(x, h(x)) ε-intersect and denote
by u(x, h(x)) the ε-intersection of them. Assume that g1 is
ε0-valid (w.r.t h) and g2 is (ε, α)-complete (w.r.t h). Then, u
is ε1-valid (w.r.t h), for ε1 := 1− 2−ε0−2

√
ε0−H(h(x))

1−α .

Proof. Let r1 : G → V1 and r2 : G → V2 be two
invertible functions, such that, r1(g1(x, h(x))) =
(e1(x, h(x)), u(x, h(x))) and r2(g2(x, h(x))) =
(e2(x, h(x)), u(x, h(x))), where, ei(x, h(x)) |= gj(x, h(x))
(for any i 6= j ∈ {1, 2}). By the chain rule property of
mutual information,

I(e1(x, h(x)), u(x, h(x));h(x))

=I(e1(x, h(x));h(x))

+ I(u(x, h(x));h(x)|e1(x, h(x)))

≤I(e1(x, h(x));h(x)) + I(u(x, h(x));h(x))

(23)

Therefore, we have:
I(u(x, h(x));h(x))

≥I(e1(x, h(x)), u(x, h(x));h(x))

− I(e1(x, h(x));h(x))

=I(r1(e1(x, h(x)), u(x, h(x)));h(x))

− I(e1(x, h(x));h(x))

=I(g1(x, h(x));h(x))− I(e1(x, h(x));h(x))

(24)

Since g1 is ε0-valid, there is a function, t1 : G → Y , such
that:

Px∼D[t1(g1(x, h(x))) 6= h(x)]

=Ex∼D[`(t1(g1(x, h(x))), h(x))] ≤ ε0 < 1/2
(25)

Therefore, by Lem. 2 and Lem. 4 in the Appendix, we have:
I(g1(x, h(x));h(x))

≥(1− ε0)H(h(x))−H(1− ε0)

≥(1− ε0)H(h(x))− 2
√
ε0

(26)

By the definition of e1(x, h(x)), we have:
I(e1(x, h(x)); g2(x, h(x))) ≤ ε (27)

Therefore, since g2 is (ε, α)-complete, for every function s
with outputs in Y , we have:

Ex∼D[`(s(e1(x, h(x))), h(x))] ≥ α (28)
Therefore, by Lem. 5 in the Appendix,

I(e1(x, h(x));h(x)) ≤ log(1− α) +H(h(x)) (29)
We conclude that:

I(u(x, h(x));h(x))

≥(1− ε0)H(h(x))− 2
√
ε0

− (log(1− α) +H(h(x)))

≥ log

(
1

1− α

)
− ε0 ·H(h(x))− 2

√
ε0

≥ log

(
1

1− α

)
− ε0 − 2

√
ε0

(30)

Finally, by Lem. 5 in the Appendix, there is a function t2
with outputs in Y , such that:

Ex∼D[`(t2(u(x, h(x))), h(x))]

≤1− 2−ε0−2
√
ε0−H(h(x))

1− α
(31)

Similar results hold for the union of two EFs: if at least one
of which is valid, the union is a valid EF, and a similar result
for at least one complete EF.

Lemma 1. Let h : Rn → Y be a model, g1, g2 : Z → G
two EFs and ε, ε0, α > 0 three constants. Assume that Y =
{±1}, g1(x, h(x)) and g2(x, h(x)) ε-intersect and denote by
ĝ(x, h(x)) the ε-union of them. If g1 (or g2) is ε0-valid (w.r.t
h), then, ĝ is ε0-valid as well. Additionally, if g1 (or g2) is
(ε1, α)-complete (w.r.t h), ĝ is also (ε1, α)-complete.

Proof. First, by the definition of ε-union, there is a represen-
tation, ĝ(x, h(x)) = (e1(x, h(x)), u(x, h(x)), e2(x, h(x))),
such that, there is an invertible function r, that satisfies:
r(e1(x, h(x)), u(x, h(x))) = g1(x, h(x)).
We would like to prove that if g1 is ε0-valid, then, ĝ is also
ε0-valid. Since, g1 is ε0-valid, there is a function t : G→ Y ,
such that:

Ex∼D[`(t(g1(x, h(x))), h(x))] ≤ ε0 (32)

In addition, by the definition of ĝ, we have a representa-
tion: ĝ(x, h(x)) = (e1(x, h(x)), u(x, h(x)), e2(x, h(x))),
such that, there is an invertible function r, that satisfies:
r(e1(x, h(x)), u(x, h(x))) = g1(x, h(x)). Therefore, we de-
fine, r′(ĝ(x, h(x))) = g1(x, h(x)) and obtain,

Ex∼D[`(t ◦ r′(ĝ(x, h(x))), h(x))] ≤ ε0 (33)

Hence, ĝ is also ε0-valid.
Next, we prove that if g1 is (ε1, α)-complete, then, ĝ is
also (ε1, α)-complete. Let ḡ(x) be a function that satisfies:
I(ḡ(x); ĝ(x, h(x))) ≤ ε1. In particular, there is a representa-
tion

I(ĝ(x); ĝ(x, h(x)))

=I(ĝ(x); e1(x, h(x)), u(x, h(x)), e2(x, h(x)))

≥I(ĝ(x); e1(x, h(x)), u(x, h(x)))

=I(ĝ(x); r(e1(x, h(x)), u(x, h(x))))

=I(ĝ(x); g1(x, h(x)))

(34)

Therefore, I(ĝ(x); g1(x, h(x))) ≤ ε1. Since, g1 is (ε1, α)-
complete, for any function s, we have:

Ex∼D[`(s(ḡ(x)), h(x))] ≥ α (35)

In particular, we conclude that ĝ is also (ε1, α)-complete.

Discussion
In this work, we have studied the properties of EFs g. We do
not propose new ways to obtain such g, which is an active
research topic with an increasing interest. Our focus is on
blending functions, which mix the input and the output. We

view this is a basic property of a wide class of existing and
future types of explanations.
The challenge in formalizing EFs using conventional machine
learning tools, is that these are not learned from data (they are
designed by the practitioners). Therefore, one cannot use the
usual convergence-based results. The claims that can be made
are based on the mutual information between the model and
the EF, the structure of the EF as a two-input function, and
the validity requirement, which entails a specific recursive
formula h ≈ t(g(x, h(x))).
There are three levels of abstractions, which are often re-
ferred to as explanations. One is the concrete explanation
itself, which for us is an object in domain G, which is the
target domain of g. The second one is the function that gen-
erates such explanations. We call these EFs. The third level
is the algorithm that provides the EF g given a model h. Our
analysis focuses on the EF level and it is important to note
that g is not general to all h, but is given and analyzed in the
context of a specific h.

Related Work
The examples that we have provided on available work on ex-
plainable solutions, are a fraction of the growing literature on
the subject. See (Guidotti et al. 2018) for a survey. Our work
covers what is referred to in this survey as the outcome expla-
nation problem. It is interesting to contrast the definition of
this term, given as Def 4.2 in that survey, to our terminology.
Their definition assumes that the explanation is viewed
through the lens of a local model cl, which is constructed by
some process f from the black box model (h in our terminol-
ogy b in theirs) at a specific location x. The explanation itself
E(cl, x) maps this local model and the input x to a human
interpretable domain.
The example given is of a decision tree, with decision rules
that are based on single attribute values (coordinates of x),
that approximated the black box model in a given neigh-
borhood of x. The explanation is given by the sequence of
decisions along the path in this decision tree taken for sam-
ple x. The well known LIME approach (Ribeiro, Singh, and
Guestrin 2016) also fits this definition well. In this approach,
random samples are created in the vicinity of x, by perturbing
this sample, and are weighed by their distance from x, when
learning the local model cl.
Our framework does not discuss the process f(h, x). The
two frameworks are compatible in the sense that g(x, h(x))
can be written as E(f(h, x), x), since our g is a function of
h (recall that g is specific for a given h), and since g could
be a function that is based on local approximations of h.
However, our framework emphasizes the blending properties
of the explanation domain, while their definitions emphasize
locality and local proxies of h by simple functions that are
easy to explain, such as decision trees or linear functions.
The notion of locality is deferred in our model to the notions
of consistency and explainability. However, these exist be-
tween intermediate representations and the EF, and Lipschitz
continuity type properties and does not necessarily imply an
actual approximation.
Recently, (Alvarez-Melis and Jaakkola 2018) have suggested
a framework to learn models that are explainable by design.

The basic structure is of a model that, similar to linear func-
tions, is monotonic and additive in each of a set of learned
attributes, and on learning attributes that are meaningful. The
explanation itself takes the form of presenting the contribu-
tion of each attribute, while explaining the attributes using
prototypes. While our framework focuses on explaining gen-
eral models h and not learning self-explainable models, it is
interesting to compare their stated desiderata with ours.
The specified desiderata on that work are:

1. Fidelity: the explanation of x should present the relevant
information. This is captured by our validity property (rele-
vancy to the label), as well as by the completeness property.

2. Diversity: the attributes should be disentangled and there
should not be too many of them. This is a property on the
explanation domain G, which in their work is also used for
the representation of the network’s penultimate layer. We
consider a broader class of explanations, and our analysis
of representations refers to f that can be any layer of the
network h.

3. Grounding: the attributes of the explanations should be
immediately interpretable to humans. In their model, the
interpretation is done through prototype samples. A proto-
type based G is compatible with our framework. However,
we cannot formalize the notion of interpretability.

Conclusions

The basic concepts of explanations in AI are elusive for sev-
eral reasons. First, as mentioned, they need to be interpretable
by humans, and human understanding has not been fully mod-
eled. Second, there are multiple approaches in the literature.
Third, tacit knowledge, by definition, cannot be fully laid
down as a set of rules.
We build a formal framework for explainable AI, by consid-
ering, as a first principle, that outcome explanations blend
the input and the prediction. Then, we link representations,
which we typically take as intermediate activations of neural
network models, to these explanations. The interrelationships
between the explanations, the models, and the representations
are potent enough to lead to several theoretical results.
One result is that desirable links between explanations and
layers of a neural network cannot be specific to this layer,
but also manifest to other layers. Another is that a valid
explanation must also be complete. A third result studies
explainability in the context of a concrete explanation of the
predictions of multiclass neural networks. Lastly, we show
results on the union and intersection of explanations.

Acknowledgements

This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant ERC CoG
725974). The contribution of Tomer Galanti is part of Ph.D.
thesis research conducted at Tel Aviv University.

References
[Alvarez-Melis and Jaakkola 2018] Alvarez-Melis, D., and
Jaakkola, T. S. 2018. Towards robust interpretability with
self-explaining neural networks. In NIPS.

[Cover and Thomas 2006] Cover, T. M., and Thomas, J. A.
2006. Elements of Information Theory (Wiley Series in
Telecommunications and Signal Processing). New York, NY,
USA: Wiley-Interscience.

[D’Aurizio 2015] D’Aurizio, J. 2015. An upper bound
of binary entropy. https://math.stackexchange.
com/users/44121/jack-daurizio.

[Feder and Merhav 1994] Feder, M., and Merhav, N. 1994.
Relations between entropy and error probability. IEEE Trans.
Information Theory 40:259–266.

[Guidotti et al. 2018] Guidotti, R.; Monreale, A.; Ruggieri,
S.; Turini, F.; Giannotti, F.; and Pedreschi, D. 2018. A survey
of methods for explaining black box models. ACM Comput.
Surv. 51(5):93:1–93:42.

[Hendricks et al. 2016] Hendricks, L. A.; Akata, Z.;
Rohrbach, M.; Donahue, J.; Schiele, B.; and Darrell, T. 2016.
Generating visual explanations. In European Conference on
Computer Vision, 3–19. Springer.

[Kozachinski 2018] Kozachinski, S. 2018. An upper
bound on the difference between two similar mutual
informations. https://math.stackexchange.
com/questions/2964570/a-bound-on-ixy-
in-terms-of-ixz-for-y-and-z-that-are-
similar/2964661.

[Regev 2013] Regev, O. 2013. Entropy-based bounds on
dimension reduction in l1. Israeli Journal of Mathematics.

[Ribeiro, Singh, and Guestrin 2016] Ribeiro, M. T.; Singh,
S.; and Guestrin, C. 2016. Why should I trust you?: Ex-
plaining the predictions of any classifier. In Proceedings of
the 22nd ACM SIGKDD international conference on knowl-
edge discovery and data mining, 1135–1144. ACM.

[Zeiler and Fergus 2014] Zeiler, M. D., and Fergus, R. 2014.
Visualizing and understanding convolutional networks. In
European conference on computer vision, 818–833.

Useful Lemmas
For completeness, we provide some useful lemmas that are
being employed in the proofs on the theorems in our paper.
Lemma 2. Let X and Y be two random variables. Assume
that there is a function F , such that P[F (Y) = X] ≥ q ≥
1/2. Then, I(X;Y) ≥ qH(X)−H(q).

Proof. The lemma is a modification of Claim 2.1 in (Regev
2013).

Lemma 3. Let X , Y and Z be three random variables,
where Y and Z are binary. We have:

|I(X;Y)− I(X;Z)| ≤ H(P[Y 6= Z]) (36)

Proof. See. (Kozachinski 2018).

Lemma 4. Let p ∈ [0, 1]. Then,

H(p) ≤ 2
√
p(1− p) (37)

Proof. See (D’Aurizio 2015).

Lemma 5. Let X and Y be two discrete random variables
taking values from S1 and S2 (resp.). Then, there is a function
t : S2 → S2, such that:

PX,Y [X = t(Y)] ≤ 1− 2I(X;Y)−H(X) (38)

Proof. See (Feder and Merhav 1994).

Lemma 6 (Intersection Equivalence). Let x ∼ D and f1 :
X → X 1 and f2 : X → X 2 are two functions. In addition, let
u1(x) and u2(x) be two ε-intersections of f1(x) and f2(x),
i.e., there are two pairs of invertible functions ri1 : X 1 → V1

and ri2 : X 2 → V2, such that, ri1(f1(x)) = (ei1(x), ui(x))
and ri2(f2(x)) = (ei2(x), ui(x)), where, I(eij(x); fk(x)) ≤
ε (for any i ∈ {1, 2} and k 6= j ∈ {1, 2}). Then, there are
functions s1, s2 and d1, d2, such that, for all i 6= j ∈ {1, 2},
we have:

Ex∼D[`(si(ui(x)), uj(x))] ≤ 1− 2−ε (39)

and also,

Ex∼D[`(di(e
i
1(x)), ej1(x))] ≤ 1− 2−ε (40)

In particular, if ε = 0, s1(u1(x)) = u2(x), s1 is invertible,
such that s−11 = s2 and d1(e11(x)) = e21(x), d1 is invertible
and d−11 = d2.

Proof. First, we would like to show that I(e11(x);u2(x)) ≤ ε.
Assume by contradiction that this is not the case. We consider
that, u2(x) can be represented as a function of f2(x), since
u2(x) consists of the last coordinate of r22(f2(x)). Therefore,
since r22 is invertible,

I(e11(x); f2(x)) = I(e11(x); r22(f2(x)))

≥ I(e11(x);u2(x)) > ε
(41)

In contradiction to the assumption that I(e11(x); f2(x)) ≤ ε.
By the same argument, we also have, I(e11(x);u1(x)) ≤ ε.
By the chain rule property of mutual information,

I(e11(x), u1(x);u2(x)) =I(u1(x);u2(x))

+ I(e11(x);u2(x)|u1(x))

≤I(u1(x);u2(x))

+ I(e11(x);u2(x))

(42)

Therefore, since r11 and r21 are invertible functions,

I(u1(x);u2(x)) ≥I(e11(x), u1(x);u2(x))

− I(e11(x);u2(x))

≥I(e11(x), u1(x);u2(x))− ε
=I(r11(e11(x), u1(x));u2(x))− ε
=I(f1(x);u2(x))− ε
=I(r21(f1(x));u2(x))− ε
=I(e21(x), u2(x);u2(x))− ε
≥I(u2(x);u2(x))− ε
=H(u2(x))− ε

(43)

https://math.stackexchange.com/users/44121/jack-daurizio
https://math.stackexchange.com/users/44121/jack-daurizio
https://math.stackexchange.com/questions/2964570/a-bound-on-ixy-in-terms-of-ixz-for-y-and-z-that-are-similar/2964661
https://math.stackexchange.com/questions/2964570/a-bound-on-ixy-in-terms-of-ixz-for-y-and-z-that-are-similar/2964661
https://math.stackexchange.com/questions/2964570/a-bound-on-ixy-in-terms-of-ixz-for-y-and-z-that-are-similar/2964661
https://math.stackexchange.com/questions/2964570/a-bound-on-ixy-in-terms-of-ixz-for-y-and-z-that-are-similar/2964661

Again, by the chain rule property of mutual information,

I(e11(x), u1(x); e21(x)) =I(e11(x); e21(x))

+ I(e21(x);u1(x)|e11(x))

≤I(e21(x); e11(x))

+ I(e11(x);u1(x))

(44)

Therefore, since r11 and r21 are invertible functions,

I(e11(x); e21(x)) ≥I(e11(x), u1(x); e21(x))

− I(e11(x);u1(x))

≥I(e11(x), u1(x); e21(x))− ε
=I(r11(e11(x), u1(x)); e21(x))− ε
=I(f1(x); e21(x))− ε
=I(r21(f1(x)); e21(x))− ε
=I(e21(x), u2(x); e21(x))− ε
≥I(e21(x); e21(x))− ε
=H(e21(x))− ε

(45)

Thus, we conclude that I(u1(x);u2(x)) ≥ H(u2(x))−ε and
that I(e11(x); e21(x)) ≥ H(e21(x)) − ε. In a similar manner,
we can show the other directions as well, I(u1(x);u2(x)) ≥
H(u1(x))− ε and I(e11(x); e21(x)) ≥ H(e11(x))− ε. There-
fore, by Lem. 5 in the Appendix, there are functions s1, s2
and d1, d2, such that, for all i 6= j ∈ {1, 2}, we have:

Ex∼D[`(si(ui(x)), uj(x))]

=Pu1(x),u2(x)[si(ui(x)) = uj(x)]

≤1− 2I(u1(x);u2(x))−H(uj(x))

≤1− 2H(uj(x))−ε−H(uj(x)) = 1− 2−ε

(46)

and also,

Ex∼D[`(di(e
i
1(x)), ej1(x))] ≤ 1− 2−ε (47)

Finally, if ε = 0, for every x ∈ X , we have: s1(u1(x)) =
u2(x), s2(u2(x)) = u1(x), d1(e11(x)) = e11(x) and
d2(e21(x)) = e21(x). Therefore, s−11 = s2 and d−11 = d2.

	Introduction
	Settings
	A Formal Model
	Properties of EFs

	Linking Representations and EFs
	A Specific Case Study

	Validity and Completeness
	EF Operators
	Discussion
	Related Work
	Conclusions
	Acknowledgements
	Useful Lemmas

