
IMLI: An Incremental Framework for MaxSAT-Based Learning of Interpretable
Classification Rules

Bishwamittra Ghosh and Kuldeep S. Meel
School of Computing

National University of Singapore

Abstract

The wide adoption of machine learning in the critical do-
mains such as medical diagnosis, law, education had pro-
pelled the need for interpretable techniques due to the need
for end user to understand the reasoning behind decisions due
to learning systems. The computational intractability of in-
terpretable learning led practitioners to design heuristic tech-
niques, which fail to provide sound handles to tradeoff accu-
racy and interpretability.
Motivated by the success of MaxSAT solvers over the past
decade, recently MaxSAT-based approach, called MLIC, was
proposed that seeks to reduce the problem of learning inter-
pretable rules expressed in Conjunctive Normal Form (CNF)
to a MaxSAT query. While MLIC was shown to achieve accu-
racy similar to that of other state of the art black-box classi-
fiers while generating small interpretable CNF formulas, the
runtime performance of MLIC is significantly lagging and
renders approach unusable in practice. In this context, au-
thors raised the question: Is it possible to achieve the best of
both worlds, i.e., a sound framework for interpretable learn-
ing that can take advantage of MaxSAT solvers while scaling
to real-world instances?
In this paper, we take a step towards answering the above
question in affirmation. We propose an incremental approach
to MaxSAT based framework that achieves scalable runtime
performance via partition-based training methodology. Ex-
tensive experiments on benchmarks arising from UCI repos-
itory demonstrate that IMLI achieves up to three orders of
magnitude runtime improvement without loss of accuracy
and interpretability.

1 Introduction
The recent advances in the machine learning techniques
have led autonomous decision making systems be adopted in
wide range of domains to perform data-driven decision mak-
ing. As such the domains range from movie recommenda-
tions, ad predictions to legal, medical, and judicial. The di-
versity of domains mandate different criteria for the machine
learning techniques. For domains such as movie recommen-
dations and ad predictions, accuracy is usually the primary
objective but for safety critical domains (Otte 2013) such
as medical and legal, interpretability, privacy, and fairness

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(Barocas, Hardt, and Narayanan 2017) are of paramount im-
portance.

It has been long observed that the interpretable techniques
are typically trusted and adopted by decision makers as in-
terpretability provides them understanding of reasoning be-
hind a tool’s decision making (Ribeiro, Singh, and Guestrin
2016). At this point, it is important to acknowledge that for-
malizing interpretability is a major challenge (Doshi-Velez
and Kim 2017) and we do not claim to have final word on
this. In this context, it is worth noting that for several do-
mains such as medical domain, which was the motivation
for our investigation, decision rules with small number of
rules tend to be most interpretable (Letham et al. 2015).

Since the problem of rule learning is known to be in NP-
hard, the earliest efforts focused on heuristic approaches that
sought to combine heuristically chosen optimization func-
tions with greedy algorithmic techniques. Recently, there
has been surge of effort to achieve balance between accu-
racy and rule size via principled objective functions and us-
age of combinatorial optimization techniques such as linear
programming (LP) relaxations, sub-modular optimization,
or Bayesian methods (Bertsimas, Chang, and Rudin 2012;
Marchand and Shawe-Taylor 2002; Malioutov and Varsh-
ney 2013)(Boros et al. 2000; Wang et al. 2015). Motivated
by the success of MaxSAT solving over the past decade,
Malioutov and Meel proposed a MaxSAT-based approach,
called MLIC (Maliotov and Meel 2018), that provides a pre-
cise control of accuracy vs. interpretability. The said ap-
proach was shown to provide interpretable Boolean formu-
las without significant loss of accuracy compared to the state
of the art classifiers. MLIC, however, has poor scalability in
terms of training time and times out for most instances be-
yond hundreds of samples. In this context, we ask: Can we
design a MaxSAT-based framework to efficiently construct
interpretable rules without loss of accuracy and scaling to
large real-world instances?

The primary contribution of this paper is an affirmative
answer to the above question. We first investigate the rea-
son for poor scalability of MLIC and attribute it to large
size (i.e., number of clauses) of MaxSAT queries constructed
by MLIC. In particular, for training data of n samples over
m boolean features, MLIC constructs a formula of size
O(n · m · k) to construct a k−clause Boolean formula.
We empirically observe that the performance of MaxSAT

solvers has worse than quadratic degradation in runtime with
increase in the size of query. This leads us to propose a
novel incremental framework, called IMLI, for learning in-
terpretable rules using MaxSAT. In contrast to MLIC, IMLI
makes p queries to MaxSAT solvers with each query of the
size O(np · m · k). IMLI relies on first partitioning the data
into p partitions and then incrementally learning rules on the
p partitions in a linear order such that rule learned for the
i-th partition not only uses the current partition but regular-
izes itself with respect to the rules learned from the first i−1
partitions. We conduct a comprehensive experimental study
over the large set of benchmarks and show that IMLI signif-
icantly improves upon the runtime performance of MLIC by
achieving speedup of up to three orders of magnitude. Fur-
thermore, the rules learned by IMLI are significantly small
and easy to interpret compared to that of the state of the art
classifiers such as RIPPER.

Similar to Malioutov and Meel (2018), we hope that
IMLI will excite researchers in machine learning and
CP/SAT (Constraint Programming/Satisfiability) communi-
ties to consider this topic further: in designing new MaxSAT-
based formulations and in turn designing the MaxSAT
solvers tuned for interpretable machine learning.

2 Preliminaries
We use capital boldface letters such as X to denote matrices
while lower boldface letters y are reserved for vectors/sets.
For a matrix X, Xi represents the i-th row of X while for a
vector/set y, yi represents the i-th element of y.

Let F be a Boolean formula and b = {b1, b2, . . . , bm} be
the set of variables appearing in F . A literal is a variable (bi)
or its complement(¬bi). A satisfying assignment or a witness
of F is an assignment of variables in b that makes F eval-
uate to true. If σ is an assignment of variables and bi ∈ b,
we use σ(bi) to denote the value assigned to bi in σ. F is in
Conjunctive Normal Form (CNF) if F := C1 ∧C2 · · · ∧Ck,
where each clauseCi is represented as disjunction of literals.
We use |Ci| to denote the number of literals in Ci. For two
vectors u and v over propositional variables or constants (0,
1, true, false etc.), we define u ∨ v =

∨
i(ui ∧ vi), where

ui and vi denote a variable/constant at the i-th index of u
and v respectively. In this context, note that the operation ∧
between a variable and a constant follows the standard inter-
pretation, i.e., 0 ∧ b = 0 and 1 ∧ b = b.

We consider a standard binary classification, where we
are given a collection of training samples {Xi, yi} where
each vector Xi ∈ X contains the valuation of the features
x = {x1, x2, . . . , xm} for sample i, and yi ∈ {0, 1} is the
binary label for sample i. A classifier R is a mapping that
takes in a feature vector x and return a class y, i.e., y =
R(x). The goal is not only to design R to approximate our
training set, but also to generalize to unseen samples arising
from the same distribution. We define two rules R1 and R2

to be equivalent if ∀i,R1(Xi) = R2(Xi). In this work, we
restrict x and y to be Boolean (we discuss in Sect. 4.2 that
such a restriction can be achieved without loss of generality)
and focus on classifiers that can be expressed compactly in
CNF. We use clause(R, i) to denote the i-th clause of R.

Furthermore, we use |R| to denote the rule-size of classifier
R that is the sum of the count of literals in all the clauses,
i.e., |R| = Σi|clause(R, i)|.

In this work, we focus on the weighted variant of CNF
wherein a weight function is defined over clauses. For a
clause Ci and weight function W (·), we use W (Ci) to de-
note the weight of clause Ci. We say that a clause Ci is
hard if W (Ci) = ∞, otherwise Ci is called a soft clause.
To avoid notational clutter, we overload W (·) to denote the
weight of an assignment or clause, depending on the con-
text. We define weight of an assignment σ as the sum of
weight of clauses that σ does not satisfy. Formally, W (σ) =
Σi|σ 6|=Ci

W (Ci).
Given F and weight function W (·), the problem of

MaxSAT is to find an assignment σ∗ that has the minimum
weight, i.e., σ∗ = MaxSAT(F,W) if ∀σ 6= σ∗,W (σ∗) ≤
W (σ). Our formulation will have positive clause weights,
hence MaxSAT corresponds to satisfying as many clauses as
possible, and picking the strongest clauses among the unsat-
isfied ones. Borrowing terminology of community focused
on developing MaxSAT solvers, we are solving a partial
weighted MaxSAT instance wherein we mark all the clauses
with∞ weight as hard and clauses with other positive value
less than ∞ weight as soft and ask for a solution that op-
timizes the partial weighted MaxSAT formula. The knowl-
edge of inner working of MaxSAT solvers and encoding of
our representation into weighted MaxSAT is not required for
this paper.

3 Problem Formulation
Given a training set {X,y}, our goal is to find an inter-
pretable rule that is as accurate as possible. As noted ear-
lier, there are several notions of interpretability. We follow
the notion employed in Malioutov and Meel (Maliotov and
Meel 2018), which focuses on the construction of rules in-
volving few clauses each with few literals 1.

In particular, suppose R classifies all samples correctly,
i.e., ∀i, yi = R(Xi). Among all the rules that classify all
samples correctly, we choose R which is the sparse (most
interpretable) one.

min
R
|R| such that ∀i, yi = R(Xi)

A classifier rule, however, can not classify all samples cor-
rectly. Hence we choose a classifier that makes less predic-
tion error. ER is the set of samples which are misclassified
by R, i.e., ER = {Xi|yi 6= R(Xi)}. Hence we aim to find
R as follows.

min
R
|R|+ λ|ER| such that ∀Xi /∈ ER, yi = R(Xi)

λ is the regularization parameter balancing the trade-off
between classifier complexity (opposite to interpretability in
our model) and prediction accuracy. Higher value of λ guar-
antees less prediction error while sacrificing the sparsity of
R by adding more literals inR, and vice versa.

1An advantage of Malioutov and Meel’s formulation is a formal
notion of interpretability, which is amenable to formal analysis. We
do not wish to claim that Malioutov and Meel’s notion is the only
formal definition of interpretability.

4 IMLI: MaxSAT-Based Incremental
Learning Framework of Interpretable

Rules
In this section, we present the primary contribution of this
paper, IMLI, which is a MaxSAT-based incremental learn-
ing framework for interpretable classification rules. The core
technical idea behind IMLI is to divide the training data into
a fixed number p of partitions and employ MaxSAT based
learning framework for each partition such that the MaxSAT
query constructed for partition i is based on the training data
for partition i and the rule learned until partition i−1. To this
end, we use the notation (Xi,yi) to refer to the training data
for the i-th partition. We assume that ∀i, |Xi| = |Xi−1|.

The rest of the section is organized as follows: we first
describe the construction of MaxSAT query for the i-th par-
tition in Sect. 4.1 to learn CNF rules, and then discuss the
discretization techniques for real-world datasets in Sect. 4.2.
The incrementality of IMLI gives rise to the challenge of
having redundant literals in the learned rules; we address
such redundancy in Sect. 4.3 and finally we discuss, in
Sect. 4.4, how our framework for learning CNF rules can
be easily extended to learn DNF rules as well.

4.1 Construction of MaxSAT Query
We now discuss the construction of a MaxSAT query, de-
noted by Qi, for the i-th partition (i ∈ [1, p]). To construct
the MaxSAT query for the i-th partition, we assume an ac-
cess to the rule learned from the (i − 1)-th partition (where
R0 is an empty formula).

The construction of Qi takes in four parameters: (i) k, the
desired number of clauses in CNF rule, (ii) λ, the regulariza-
tion parameter, (iii) a matrix Xi ∈ {0, 1}n×m describing the
binary value ofm features for each of n samples with Xi

q be-
ing a binary valued vector for the q-th sample corresponding
to feature vector x = {x1, x2, . . . , xm}, (iv) a label vector
yi ∈ {0, 1}n containing a class label yiq for the sample Xi

q .
Consequently, IMLI constructs a MaxSAT query for the i-
th partition and invokes an off-the-shelf MaxSAT solver to
compute the underlying ruleRi.

IMLI considers two types of propositional variables: (i)
feature variables and (ii) noise variables. For the i-th parti-
tion, IMLI formulates a classifier ruleRi based on following
intuition. Recall, a k-clause CNF ruleRi =

∧k
l=1 Cl is rep-

resented as the conjunction of k clauses where clause Cl is
the disjunction of feature variables. A sample Xi

q satisfies
Cl if Xi

q has at least one similar feature whose represen-
tative variable is present in Cl. If Xi

q satisfies ∀l, Cl, then
Ri(Xi

q) = 1 otherwise Ri(Xi
q) = 0. Since feature xj can

be present or not present in each of k clauses, IMLI consid-
ers k boolean variables, each denoted by blj (l ∈ [1, k]) for
feature xj to denote its participation in each of k clauses.
A sample Xi

q , however, can be misclassified by Ri i.e.,
Ri(Xi

q) ⊕ yiq = 1. IMLI introduces a noise variable ηq cor-
responding to sample Xi

q so that the assignment of ηq can be
interpreted whether Xi

q is misclassified byRi or not. Hence
the key idea of IMLI for learning the i-th partition is to de-

fine a MaxSAT query over k × m + n propositional vari-
ables, denoted by {b11, b12, . . . , b1m, . . . , bkm, η1, . . . , ηn}. The
MaxSAT query of IMLI consists of the following three sets
of constraints:

1. Since our objective is to find sparser rules, the default ob-
jective of IMLI would be to add a constraint to falsify as
many blj as possible. As noted earlier, ruleRi−1 from the
(i−1)-th partition plays an important role in the construc-
tion of MaxSAT constraints of the i-th partition. There-
fore, if xj ∈ clause(Ri−1, l), IMLI would deviate from
its default behaviour by adding a constraint to keep the
corresponding literal true in the optimal assignment. The
weight corresponding to this clause is 1. We formalize our
discussion as follows:

V lj :=

{
blj if xj ∈ clause(Ri−1, l)
¬blj otherwise

; W (V lj) = 1

2. We use noise variables to handle mis-classifications and
therefore, IMLI tries to falsify as many noise variables as
possible. Since regularization parameter λ is proportion-
ate to accuracy (higher λ ensures higher accuracy), IMLI
puts λ weight to each following soft clause.

Nq := (¬ηq); W (Nq) = λ

3. Let Bl = {blj | j ∈ [1,m]}. Here we provide the third set
of constraints of IMLI.

Dq := (¬ηq → (yq ↔
k∧
l=1

(Xq ∨Bl)));W (Dq) =∞

Every hard clause Dq can be interpreted as follows. If ηq
is assigned to false (¬ηq = true) then yiq = Ri(Xi

q) =∧k
l=1(Xq ∨Bl). The operator “∨” is defined in Sect. 2.

Finally, the set of constraints Qi for the i-th partition con-
structed by IMLI is defined as follows:

Qi :=

j=m,l=k∧
j=1,l=1

V lj ∧
n∧
q=1

Nq ∧
n∧
q=1

Dq

Next, we extractRi from the solution of Qi as follows.
Construction 1. Let σ∗ = MaxSAT(Qi,W), then xj ∈
clause(Ri, l) iff σ∗(blj) = 1.

In the rest of the manuscript, we will useR to denoteRp.

4.2 Beyond Binary Features
We have considered that the feature value of a training sam-
ple is binary. Real-world datasets, however, contain categor-
ical, real-valued or numerical features. We use the standard
discretization technique to convert categorical and continu-
ous (real or integer value) features to boolean features. We
use one hot encoding to convert categorical features to bi-
nary features by introducing a boolean vector with the car-
dinality equal to the number of distinct categories of indi-
vidual categorical features. Furthermore, we can discretize
the continuous-valued features into binary features by com-
paring the feature value to a collection of thresholds within

range and introducing a boolean feature vector with cardi-
nality proportional to the number of considered thresholds.
Specifically, for a continuous feature xc we consider a num-
ber of thresholds {τ1, . . . , τt} where τi < τi+1 and define
two separate Boolean features I[xc ≥ τi] and I[xc < τi] for
each τi. We present the following definitions based on the
discretization of continuous features.
Definition 2. tval(b) : b → τ is a function over boolean
variables corresponding to discretized binary features (from
a continuous feature) and outputs the compared threshold
value.
Definition 3. op(b) : b → {≥, <} is a function over
boolean variables corresponding to discretized binary fea-
tures (from a continuous feature) and outputs the compari-
son operator between continuous feature value and tval(b).
Definition 4. siblings(bi, bj) : (bi, bj) → {true, false}
is a function over pair of boolean variables bi, bj and out-
puts true if the boolean features corresponding to bi, bj are
constructed by discretizing the same continuous feature and
op(bi) = op(bj).
Example 4.1. Consider a continuous feature xc with range
(0, 100) and three thresholds {25, 50, 75} associated with
this feature. IMLI introduces 6 new boolean features {x1 :
I[xc ≥ 25], x2 : I[xc ≥ 50], x3 : I[xc ≥ 75], x4 : I[xc <
25], x5 : I[xc < 50], x6 : I[xc < 75]}. Following this dis-
cretization technique, the binary feature vector of a sample
with feature value xc = 37.5 is 100011, because among
the 6 introduced boolean features x1 : I[37.5 ≥ 25] = 1,
x5 : I[37.5 < 50] = 1, and x6 : I[37.5 < 75] = 1.
Example 4.2. In Example 4.1, bi is a boolena variable cor-
responding to feature xi. Now tval(b1) = 25, op(b1) = “ ≥
”, siblings(b1, b2) = true, and siblings(b1, b4) = false.

4.3 Redundancy Removal
Given the incremental procedure of learning R where the
constraints for the i-th partition are influenced from the rule
learned until the (i − 1)-th partition, one key challenge is
to address potential redundancy in the learned rules. In par-
ticular, we observe that redundancy manifests itself in bi-
nary features corresponding to continuous-valued features
as the (i− 1)-th partition might suggest inclusion of feature
I[xc < τu] while the i-th partition also suggests inclusion of
feature I[xc < τv] where τu 6= τv . To this end, we present
Algorithm 1 to remove redundant literals.

Algorithm 1 Remove Redundancy

1: procedure REMOVEREDUNDANTLITERALS(R)
2: for each clause Cl ofR do
3: for each pair 〈bli, blj〉 where σ(bli) = σ(blj) = 1,
siblings(bli, b

l
j) = true, and tval(bli) < tval(blj) do

4: if op(bli) = op(blj) = “ ≥ ” then
5: R′ = R[σ(blj) 7→ 0] . blj is redundant
6: else
7: R′ = R[σ(bli) 7→ 0]

8: returnR′

Lemma 5. |R′| ≤ |R| andR′ is equivalent toR.

Proof. For lack of space, proof is removed.

4.4 Learning DNF Rules
Primarily we focus on learning ruleRwhich is in CNF form.
We can also apply incremental technique for learning DNF
rules. Suppose, we want to learn a rule y = S(x) where
S(x) is expressible in DNF. We show that y = S(x) ↔
¬(y = ¬S(x)). Here ¬S(x) is in CNF. Therefore, to learn
DNF rule S(x), we simply call IMLI with ¬y as input for
all p batches, learn CNF rule, and finally negate the learned
rule. Hence Algorithm 1 can be directly applied.

5 Experiment
We have implemented a prototype implementation in Python
to evaluate the performance of IMLI2. The experiment has
been conducted on high performance computer cluster,
where each node consists of E5-2690 v3 CPU with 24 cores,
96GB of RAM, and 130,000 CPU hours. We have conducted
an extensive set of experiments on publicly available bench-
marks from UCI repository (Dheeru and Karra Taniskidou
2017) to answer the following questions.

1. How do the training time and accuracy of IMLI compare
to that of state of the art classifiers including both inter-
pretable and non-interpretable ones?

2. How do accuracy, rule size, and training time of IMLI vary
with regularization parameter λ and the number of parti-
tions p?

3. How interpretable are the rules generated by IMLI?

In summary, the experimental results demonstrate that
IMLI can scale to large datasets involving tens of thousands
of samples with hundreds of binary features. In contrast to
MLIC, IMLI achieves up to three orders of magnitude im-
provement in training time without loss of accuracy and in-
terpretability. IMLI generates rules which are not only in-
terpretable but also accurate compared to other classifiers,
which often produce non-interpretable models for the sake
of accuracy.

5.1 Experiment Methodology:
To measure the performance gain over MLIC, we measure
the accuracy and training time of IMLI vis-a-vis MLIC. We
also perform comparisons with another state of the art classi-
fier RIPPER and other (mostly) non-interpretable classifiers
such as random forest (RF), support vector classifier (SVC),
Nearest Neighbors classifier (NN), l1-penalized Logistic Re-
gression (LR).

The number of parameter values is comparable (10) for
each technique. For RF and RIPPER, we use control based
on the cutoff of the number of examples in the leaf node. For
SVC, NN, and LR we discretize the regularization parameter
on a logarithmic grid. For both IMLI and MLIC, we have two
choices of λ ∈ {5, 10}, three choices of k ∈ {1, 2, 3}, and
two choices of the type of rule as {CNF,DNF}. For IMLI

2https://github.com/meelgroup/mlic

we vary the number of partitions p for each dataset such that
each partition has at least eight samples and at most 512
samples. For all classifiers, we set the training time cutoff to
be 1000 seconds.

We perform an assessment of test accuracy on a hold-
out set and mean validation accuracy on a 10-fold cross-
validation set (holdout set 10%, validation set 9%, training
set 81%). We compute test accuracy and mean validation ac-
curacy across the ten folds for each choice of the parameter
for each technique, and report test accuracy, mean validation
accuracy, and mean training time for a choice of the param-
eter which incurs the best test accuracy. To remove the bias
of a particular holdout set we perform ten repetitions with
different holdout sets and present the mean statistics.

For MLIC and IMLI, we experimented with different
MaxSAT solvers and finally chose MaxHS (Davies and Bac-
chus 2011) for MLIC since MaxSAT queries generated by
MLIC timeout for all the solvers and MaxHS is the only
solver to return the best found answer so far. In contrast,
queries constructed by IMLI are easier and the best runtime
performance is obtained by using Open-WBO solver (Mar-
tins, Manquinho, and Lynce 2014).

5.2 Results

Comparison Among Different Classifiers: Table 1
presents the comparison of IMLI vis-a-vis typical inter-
pretable and non-interpretable classifiers. The first three
columns list the name, size (number of samples), and the
number of binary features (discretized) for each dataset. The
next seven columns present test accuracy, validation accu-
racy, and training time of the classifiers.

In Table 1 we observe that MLIC and RIPPER have
slightly higher accuracy than IMLI. Specifically consider-
ing all datasets MLIC (resp. RIPPER) has on average 1.12%
(resp. 0.12%) higher test accuracy and 3.09% (resp. 2.29%)
higher validation accuracy than that of IMLI. In contrast,
IMLI takes up to three order of magnitude less training time
compared to MLIC and upto one order of magnitude less
time compared to RIPPER. Interestingly, IMLI is compet-
itive to black-box classifiers, e.g. SVC and NN for large
datasets. In this context, we think IMLI achieves a sweet
spot in achieving significant runtime improvement in train-
ing without losing accuracy.

At this point, one may wonder as to whether minor loss in
accuracy also leads to loss of interpretability. To this end, we
illustrate a detailed comparison among the generated rules of
IMLI, RIPPER, and MLIC in Table 2. We observe that rule
size of IMLI is significantly smaller than that of RIPPER and
MLIC. In particular, note that IMLI can generate rules with
size less than eight for all the datasets (exception in Adult
dataset where IMLI still has the most sparse rule), thereby
demonstrating the sparsity of generated rules. In contrast,
MLIC and RIPPER generate rules of significantly larger size
than IMLI. As indicated earlier, sparsity is only one of sev-
eral possible approaches to quantify interpretability. There-
fore, we also decided to observe the generated rules and in-
terestingly, the generated rules seem very intuitive.

2 4 6 8 10
λ

0

1

2

3

4

5

6

7

R
u
le

 S
iz

e

CNF(1) CNF(2)

(a) k ∈ {1, 2}, p = 4

2 4 6 8 10
λ

0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65

T
im

e
(s

)

CNF(1) CNF(2)

(b) k ∈ {1, 2}, p = 4

Figure 1: Effect of regularization parameter λ on rule size
and training time. The number within parenthesis denotes
the number of clause k for the respective rule.

2 4 8 16
p

1
2
3
4
5
6
7
8
9

R
u
le

 S
iz

e

DNF(1)

CNF(1)

DNF(2)

CNF(2)

(a)

2 4 8 16
p

0.2

0.4

0.6

0.8

1.0

1.2

T
im

e
(s

)

DNF(1)

CNF(1)

DNF(2)

CNF(2)

(b)

2 4 8 16
p

70

75

80

85

90

95

100

T
ra

in
 A

cc
u
ra

cy

DNF(1)

CNF(1)

DNF(2)

CNF(2)

(c)

2 4 8 16
p

72

74

76

78

80

82

V
a
lid

a
ti

o
n
 A

cc
u
ra

cy

DNF(1)

CNF(1)

DNF(2)

CNF(2)

(d)
Figure 2: Effect of the number of partitions p on rule size,
training time, train accuracy, and validation accuracy (k ∈
{1, 2}, λ = 10). The number within parenthesis denotes the
number of clause k for the respective rule.

Varying Regularization Parameter λ: In Figure 1 we
present the result for varying λ. Our experiment result finds
a similar observation in all the datasets, and here we present
result for Parkinsons dataset.

Recall that size of a rule is the total number of literals ap-
pearing inR. As we increase the value of λ, rule size (Figure
1a) and the time taken to solve the MaxSAT query (Figure
1b) decreases. When λ = 1, all the soft clauses have equal
weight. However, when λ is higher, soft clause Nq is put a
higher weight than V lj , which turns out in finding the solu-
tion of the query requiring less time because of the priority
among soft clauses. Therefore, the generated rule becomes
sparser. We find a similar trend for DNF rules too. In empiri-
cal study we find that as we increase λ, training accuracy in-
creases gradually but validation accuracy and test accuracy
do not follow a monotonic behavior in the partition-based
learning.

Varying The Number of Training Partitions p: Figure 2
presents the effect on rule size, training time, train accuracy,
and validation accuracy as we vary p. For all the datasets
we find a similar observation and here present the result for
Parkinsons dataset for ease of exposition.

In Figure 2a we observe that the size of the rule decreases

Dataset Size Features LR NN RF SVC RIPPER MLIC IMLI

Parkinsons 195 392
97.5 90 97.5 87.5 85.00 97.5 95

[69.76] [82.68] [80.98] [83.5] [76.74] [82.35] [79.41]
(0.22) (0.14) (1.7) (0.18) (2.92) (114.75) (0.37)

Ionosphere 351 540
93.06 86.11 95.83 95.83 93.06 93.06 91.67

[90.64] [87.18] [92.77] [90.65] [85.73] [91.94] [85.48]
(0.32) (0.26) (1.72) (0.26) (3.3) (917.13) (0.5)

WDBC 569 540
98.28 95.69 96.55 96.55 92.24 93.97 89.66

[96.77] [97.27] [96.68] [97.16] [93.54] [95.1] [91.18]
(0.33) (0.45) (1.8) (0.27) (3.53) Timeout (0.78)

Blood 748 64
80 76.67 76 76 76 75.33 76

[75.92] [76.14] [76.22] [76.22] [76.22] [77.61] [76.12]
(0.2) (0.2) (1.68) (0.18) (2.23) (5.96) (0.24)

PIMA 768 134
75.32 77.92 76.62 75.32 75.32 75.97 73.38

[74.75] [73.23] [75.54] [76.63] [74.36] [71.74] [68.12]
(0.3) (0.32) (1.99) (0.37) (2.58) Timeout (0.74)

Tom’s HW 28179 844
96.98 94.11 97.11 96.83 96.75 96.61 96.86

[97.12] [93.91] [97.35] [97.1] [97.12] [96.55] [96.23]
(2.24) (910.36) (27.11) (354.15) (37.81) Timeout (23.67)

Adult 32561 262
84.58 83.46 84.31 84.39 83.72 79.72 80.84

[84.99] [83.62] [84.68] [84.69] [83.49] [79.53] [77.43]
(5.8) (640.81) (36.64) (918.26) (37.66) Timeout (25.07)

Credit-default 30000 334
80.81 79.61 80.87 80.69 80.97 80.72 79.41

[82.16] [80.2] [82.13] [82.1] [82.07] [82.14] [75.81]
(6.87) (872.97) (37.72) (847.93) (20.37) Timeout (32.58)

Twitter 49999 1050
95.67

Timeout
95.16

Timeout
95.56 94.78 94.69

[96.32] [96.46] [96.16] [95.69] [95.08]
(3.99) (67.83) (98.21) Timeout (59.67)

Table 1: Comparisons of classification accuracy with 10-fold cross validation for different classifiers. For every cell in the last
seven columns the top value represents the test accuracy (%) on unseen data, the middle value surrounded by square bracket
represents average validation accuracy (%) of 10-fold, and the bottom value surrounded by parenthesis represents the average
training time in seconds.

Dataset RIPPER MLIC IMLI
Parkinsons 2.6 2 8
Ionosphere 9.6 13 5
WDBC 7.6 14.5 2
Blood 1 3 3.5
Adult 107.55 44.5 28
PIMA 8.25 16 3.5
Tom’s HW 30.33 2 2.5
Twitter 21.6 20.5 6
Credit 14.25 6 3

Table 2: Size of the rule of interpretable classifiers.

as p increases. This observation can be attributed to the de-
crease in the number of training samples per partition with
the increase in the number of partitions and consequently,
smaller rules suffice. In Figure 2b IMLI empirically shows
that the training time at first decreases significantly and then
increases slowly with the increase in p. This observation can
be attributed to the combined effect of the number of queries
and the size of queries. Initially, we achieve a significant
reduction in the size of query while the number of queries
eventually dominate the runtime.

In Figure 2c we observe that IMLI tends to make less train-
ing error as p goes higher because IMLI learns on fewer sam-
ples with fixed λ value. Moreover, we observe that CNF
rules have higher train accuracy than DNF rules, and 2-

clause rules have higher train accuracy than 1-clause rules
for both CNF and DNF rules.

In Figure 2d we notice a decrease in validation accuracy
as we allow more partitions because learning on fewer sam-
ples results in a rule that has less predictive power on valida-
tion set. For small p, IMLI, however, ensures higher valida-
tion accuracy if the rule has more clauses. Moreover, effect
of the number of partitions on test accuracy computed on
unseen data does not follow any specific pattern.

In summary, we observe that the number of partitions
gives a sound handle to the end user to tradeoff the training
time, validation accuracy, and interpretability of the rules.

6 Conclusion
In this paper, we present IMLI: an incremental framework
for MaxSAT-based learning of interpretable classification
rules. Extensive experiments on UCI datasets demonstrate
that IMLI achieves up to three orders of magnitude improve-
ment in training time with only a minor loss of accuracy.
We think IMLI highlights the promise of MaxSAT-based ap-
proach and opens up several interesting directions of future
research at the intersection of AI and SAT/SMT community.
In particular, it would be an interesting direction of future
research if the MaxSAT solvers can be designed to take ad-
vantage of incrementality of IMLI.

References
Barocas, S.; Hardt, M.; and Narayanan, A. 2017. Fairness
and machine learning. NIPS Tutorial.
Bertsimas, D.; Chang, A.; and Rudin, C. 2012. An integer
optimization approach to associative classification. In Proc.
of NIPS.
Bessiere, C.; Hebrard, E.; and OSullivan, B. 2009. Min-
imising decision tree size as combinatorial optimisation. In
Proc. of CP.
Boros, E.; Hammer, P.; Ibaraki, T.; Kogan, A.; Mayoraz, E.;
and Muchnik, I. 2000. An implementation of logical analy-
sis of data. Proc. of TKDE.
Cauwenberghs, G., and Poggio, T. 2001. Incremental and
decremental support vector machine learning. In Proc. of
NIPS.
Clark, P., and Niblett, T. 1989. The CN2 induction algo-
rithm. Mach. Learn.
Cohen, W. W., and Singer, Y. 1999. A simple, fast, and
effective rule learner. In Proc. of AAAI.
Cohen, W. W. 1995. Fast effective rule induction. In Ma-
chine Learning Proceedings 1995. Elsevier.
Davies, J., and Bacchus, F. 2011. Solving maxsat by solving
a sequence of simpler sat instances. In Proc. of CP.
Dheeru, D., and Karra Taniskidou, E. 2017. UCI machine
learning repository.
Doshi-Velez, F., and Kim, B. 2017. Towards a rigorous
science of interpretable machine learning.
Letham, B.; Rudin, C.; McCormick, T. H.; Madigan, D.;
et al. 2015. Interpretable classifiers using rules and bayesian
analysis: Building a better stroke prediction model. The An-
nals of Applied Statistics.
Maliotov, D., and Meel, K. S. 2018. Mlic: A maxsat-based
framework for learning interpretable classification rules. In
Proc. of CP.
Malioutov, D. M., and Varshney, K. R. 2013. Exact rule
learning via boolean compressed sensing. In Proc. of ICML.
Marchand, M., and Shawe-Taylor, J. 2002. The set covering
machine. Journal of Machine Learning Research (Dec).
Martins, R.; Manquinho, V.; and Lynce, I. 2014. Open-wbo:
A modular maxsat solver. In Proc. of SAT.
Otte, C. 2013. Safe and interpretable machine learning:
a methodological review. In Computational intelligence in
intelligent data analysis.
Quinlan, J. R. 1993. C4. 5: Programming for machine learn-
ing. Morgan Kauffmann.
Quinlan, J. R. 2014. C4. 5: programs for machine learning.
Elsevier.
Ralaivola, L., and dAlché Buc, F. 2001. Incremental sup-
port vector machine learning: A local approach. In Proc. of
ICANN.
Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2016. Why
should i trust you?: Explaining the predictions of any classi-
fier. In Proc. of KDD.

Rivest, R. L. 1987. Learning decision lists. Machine learn-
ing.
Ruping, S. 2001. Incremental learning with support vector
machines. In Proc. of ICDM.
Su, G.; Wei, D.; Varshney, K. R.; and Malioutov, D. M.
2015. Interpretable two-level boolean rule learning for clas-
sification.
Syed, N. A.; Huan, S.; Kah, L.; and Sung, K. 1999. Incre-
mental learning with support vector machines.
Wang, F., and Rudin, C. 2015. Falling rule lists. In Proc. of
AISTATS.
Wang, T.; Rudin, C.; Doshi-Velez, F.; Liu, Y.; Klampfl, E.;
and MacNeille, P. 2015. Or’s of and’s for interpretable clas-
sification, with application to context-aware recommender
systems.

A Related Work

The study of designing interpretable machine learning clas-
sifiers can find its root in the development of popular mod-
els such as decision trees (Bessiere, Hebrard, and OSullivan
2009; Quinlan 2014), decision lists (Rivest 1987), classifi-
cation rules (Cohen 1995) etc. Apart from designing mod-
els with the purpose of generating interpretable rules, var-
ious studies have been conducted in order to improve the
efficiency and scalability of the model. Specifically, deci-
sion rule approaches such as C4.5 rules (Quinlan 1993),
CN2(Clark and Niblett 1989), RIPPER (Cohen 1995), SLIP-
PER (Cohen and Singer 1999) rely on heuristics, branch
pruning, ad-hoc local criteria e.g., maximizing information
gain, coverage, etc. because these models consider an in-
tractable combinatorial optimization function.

In recent work, Malioutov et al. has proposed rule based
classification system by borrowing ideas from Boolean com-
pressed sensing (Malioutov and Varshney 2013). Two-level
Boolean rules (Su et al. 2015) has been proposed to trade
classification accuracy and interpretability, where hamming
loss is used to characterize accuracy and sparsity is used to
characterize interpretability. Wang et al. (Wang and Rudin
2015) has proposed a Bayesian framework for learning
falling rule lists which is an ordered list of if-then rules.
Chen et al. designs an optimization approach to learning
falling rule lists and “softly” falling rule lists, along with
Monte-Carlo search algorithms that use bounds on the opti-
mal solution to prune the search space.

Incremental learning techniques are one possible solution
to the scalability problem, where data is processed in parts,
and the result combined so as to use less memory (Syed et
al. 1999). Incremental framework has been studied in SVM
(Ruping 2001) to improve the existing approach. Specifi-
cally, an on-line recursive algorithm for SVM has been stud-
ied to facilitate learning one vector at a time (Cauwenberghs
and Poggio 2001) and a local incremental approach has been
proposed (Ralaivola and dAlché Buc 2001) to learn a SVM
based on Radial Basis Function Kernel.

B Examples

B.1 Illustration of Incremental Learning Rule

We illustrate an interpretable rule generated by IMLI with
step by step formulation over partitions on iris dataset3. Iris
dataset has four attributes: sepal length, sepal width, petal
length, and petal width. All feature values are scaled in cen-
timeter. Iris dataset has three classes: Iris Setosa, Iris Versi-
colour, and Iris Virginica. We consider the binary problem
of classifying Iris Versicolour from the other two species:
Setosa, and Verginica. Here we consider that R is a sin-
gle clause DNF rule and learned over four partitions (e.g.
R1, · · ·R4). The final ruleRIMLI is equivalent toR4.

3https://archive.ics.uci.edu/ml/datasets/
iris

R1 := petal length ≤ 5.32 ∧ petal length > 1.7∧
petal width ≤ 1.8

R2 := sepal width ≤ 3.1 ∧ petal length ≤ 5.32∧
petal length > 1.7 ∧ petal width ≤ 1.5

R3 := sepal width ≤ 3.1 ∧ petal length ≤ 5.0∧
petal length > 1.7 ∧ petal width ≤ 1.5

RIMLI := sepal width ≤ 3.1 ∧ petal length ≤ 5.0∧
petal length > 1.7 ∧ petal width ≤ 1.8

RIMLI can be interpreted as: a sample which satisfies all of
the four conditions is predicted as Iris Versicolour. Here
the rule size |RIMLI| = 4. Specifically, R1 is learned on
the first partition of training data. R2 has two literals (2nd
and 3rd) which also appear in R1, introduces two new lit-
erals (1st and 4th) while learning on the second training
partition, and falsifies a previously learned literal from R1

(σ2(petal width ≤ 1.8) = 0).
Since the dataset contains continuous valued features,

IMLI removes redundant literals at each step of learning by
applying Algorithm 1. For example, we show the generated
ruleR′3 for 3rd partition if we do not apply Algorithm 1.

R′3 := sepal width ≤ 3.1 ∧ petal length ≤ 5.0∧
petal length ≤ 5.32 ∧ petal length > 1.7∧
petal width ≤ 1.5 ∧ petal width ≤ 1.8

The underline marked literals are redundant, hence re-
moved inR3.

Example B.1. Consider a categorical feature with three
categories: “red”, “green”, “’yellow”. One hot encoding
would convert this feature to three binary variables, which
take values 100, 010, and 001 for the three categories.

Example B.2. “(is Male ∨ Age < 50) ∧ (Education =
Graduate ∨ Income ≥ 1500)”—rule is learned for negated
class label. The resultant DNF rule is “(is not Male∧Age ≥
50) ∨ (Education 6= Graduate ∧ Income < 1500)”

C Proof
Proof. (Lemma 5) The case |R′| = |R| is trivial because no
literal is removed fromR′, andR′ is equivalent toR.

When |R′| < |R|, ∃〈bli, blj〉 where l ∈ [1, k],
siblings(bli, b

l
j) = true, tval(bli) < tval(blj), and xc is the

considered continuous feature.
Suppose op(bli) = op(blj) = “ ≥ ”. Consider two sets of

real number: Si = {xi : xi ≥ tval(bli)} and Sj = {xj :
xj ≥ tval(blj)}. AsR is in CNF,R checks I[xc ∈ Si ∪ Sj]
to classify Xq,∀q. Here Si ∪ Sj = Si, so blj can be pruned.

We can prove similarly when op(bli) = op(blj) = “ < ”.
Therefore, |R′| ≤ |R| andR′ is equivalent toR.

D Experiment
D.1 Dataset Description
We use nine publicly available datasets of various size
from UCI repository for conducting experiments for IMLI.
The datasets contain both real and categorical valued fea-
tures. The datasets are buzz events from two different so-
cial networks: Twitter and Tom’s HW (Tom), Adult data
(Adult), Parkinson’s Disease detection dataset (Parkinsons),
Ionosphere (Ion), Pima Indians Diabetes (PIMA), Blood
service centers (Trans), breast cancer Wisconsin diagnos-
tic (WDBC), and Credit-default approval dataset (Credit-
default).

E Interpretable Rules
In this section we are presenting the rules generated by IMLI
for the datasets we use in experiment.

E.1 Rule for Credit Default Dataset:
A client will default if :=
(education=others OR
repayment status September: payment delay > 1 month OR
repayment status August: payment delay > 2 months OR
repayment status June: payment delay > 2 months)

E.2 Rule for Adult Dataset
A person’s income is greater than 50k if :=
(workclass is not Federal-gov AND workclass is not State-
gov AND education is not 11th AND education is not 5th-
6th AND education is not 7th-8th AND education-num
> 10.0 AND marital-status is not Divorced AND marital-
status is not Married-AF-spouse AND marital-status is not
Married-spouse-absent AND marital-status is not Never-
married AND marital-status is not Separated AND occu-
pation is not Handlers-cleaners AND occupation is not
Machine-op-inspct AND occupation is not Priv-house-serv
AND occupation is not Protective-serv AND relationship
is not Own-child AND relationship is not Unmarried AND
native-country is not Cambodia AND native-country is not
Columbia AND native-country is not Dominican-Republic
AND native-country is not Guatemala AND native-country
is not Hungary AND native-country is not Jamaica AND
native-country is not Laos AND native-country is not Mex-
ico AND native-country is not Outlying-US,Guam-USVI-
etc AND native-country is not Poland AND native-country
is not Vietnam)

E.3 Rule for WDBC Dataset
Tumor is diagnosed as malignant if :=
(standard area of tumor > 38.43 OR
largest perimeter of tumor > 115.9 OR
largest number of concave points of tumor > 0.1508)

E.4 Rule for Blood Transfusion Service Center
Dataset

He/she will donate blood if :=
(Months since last donation ≤ 4 AND
total number of donations > 3 AND

total donated blood ≤ 750.0 c.c. AND
months since first donation ≤ 45)

E.5 Rule for Pima Indians Diabetes Database
Tested positive for diabetes if :=
(Plasma glucose concentration > 125 AND
Triceps skin fold thickness ≤ 35 mm AND
Diabetes pedigree function > 0.259 AND
Age > 25 years)

E.6 Rule for Parkinson’s Disease Dataset
A person has Parkinson’s disease if :=
(minimum vocal fundamental frequency ≤ 87.57 Hz OR
minimum vocal fundamental frequency > 121.38 Hz OR
Shimmer:APQ3 ≤ 0.01 OR MDVP:APQ > 0.02 OR D2 ≤
1.93 OR NHR > 0.01 OR HNR > 26.5 OR spread2 > 0.3)
AND
(Maximum vocal fundamental frequency ≤ 200.41 Hz OR
HNR ≤ 18.8 OR spread2 > 0.18 OR D2 > 2.92)

E.7 Rule for Ionosphere Dataset
A radar is “Good” if:=
(x1 = 1 AND x2 > 0 AND x4 > 0 AND x5 > −0.23)

Here “x” represents the set of columns of the dataset.

E.8 Rule for Tom’s Hardware Dataset
A topic is popular if :=
(Number of displays at time 2 > 1936 OR Number of
displays at time 7 > 1250.6)

E.9 Rule for Twitter Dataset
A topic is popular if :=
(Number of Created Discussions at time 1 > 78 OR
Attention Level measured with number of authors at time
6 > 0.000365 OR Attention Level measured with num-
ber of contributions at time 0 > 0.00014 OR Atten-
tion Level measured with number of contributions at time
1 > 0.000136 OR Number of Authors at time 0 > 147
OR Average Discussions Length at time 3 > 205.4 OR
Average Discussions Length at time 5 > 654.0)

2 4 6 8 10
λ

0
1
2
3
4
5
6
7

R
u
le

 S
iz

e

DNF(1) DNF(2)

(a) k ∈ {1, 2}, p = 4

2 4 6 8 10
λ

0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65

T
im

e
(s

)

DNF(1) DNF(2)

(b) k ∈ {1, 2}, p = 4

2 4 6 8 10
λ

60
65
70
75
80
85
90
95

100

A
cc

u
ra

cy

TR VAL TST

(c) CNF rule (k = 1, p = 4)

2 4 6 8 10
λ

60
65
70
75
80
85
90
95

100

A
cc

u
ra

cy

TR VAL TST

(d) CNF rule (k = 2, p = 4)

2 4 6 8 10
λ

60
65
70
75
80
85
90
95

100

A
cc

u
ra

cy

TR VAL TST

(e) DNF rule (k = 1, p = 4)

2 4 6 8 10
λ

60
65
70
75
80
85
90
95

100

A
cc

u
ra

cy

TR VAL TST

(f) DNF rule (k = 2, p = 4)
Figure 3: Effect of regularization parameter λ on rule size,
training time, training accuracy (TR), validation accuracy
(VAL), and test accuracy (TST). The number within paren-
thesis denotes the number of clause k for the respective rule.

2 4 8 16
p

70
72
74
76
78
80
82
84

T
e
st

 A
cc

u
ra

cy

DNF(1)

CNF(1)

DNF(2)

CNF(2)

(a)

Figure 4: Effect of the number of partitions p on test accu-
racy (k ∈ {1, 2}, λ = 10). The number within parenthesis
denotes the number of clause k for the respective rule.

