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Abstract
Informal settlements are home to the most socially and eco-
nomically vulnerable people on the planet. In order to deliver
effective economic and social aid, non-government organiza-
tions (NGOs), such as the United Nations Children’s Fund
(UNICEF), require detailed maps of the locations of infor-
mal settlements. However, data regarding informal and for-
mal settlements is primarily unavailable and if available is
often incomplete. This is due, in part, to the cost and com-
plexity of gathering data on a large scale. An additional com-
plication is that the definition of an informal settlement is
also very broad, which makes it a non-trivial task to col-
lect data. This also makes it challenging to teach a ma-
chine what to look for. Due to these challenges we pro-
vide three contributions in this work. 1) A brand new ma-
chine learning data-set, purposely developed for informal
settlement detection that contains a series of low and very-
high resolution imagery, with accompanying ground truth an-
notations marking the locations of known informal settle-
ments. 2) We demonstrate that it is possible to detect infor-
mal settlements using freely available low-resolution (LR)
data, in contrast to previous studies that use very-high res-
olution (VHR) satellite and aerial imagery, which is typically
cost-prohibitive for NGOs. 3) We demonstrate two effective
classification schemes on our curated data set, one that is cost-
efficient for NGOs and another that is cost-prohibitive for
NGOs, but has additional utility. We integrate these schemes
into a semi-automated pipeline that converts either a LR or
VHR satellite image into a binary map that encodes the lo-
cations of informal settlements. We evaluate and compare
our methods. See here for both the source code and data
sets: https://github.com/FrontierDevelopmentLab/informal-
settlements/.

1 Introduction
The United Nations (UN) state that inhabitants of settle-
ments that meet any of the following criteria are defined to
be living in an informal settlement (United Nations 2012):

1. Inhabitants have no security of tenure vis-à-vis the
land or dwellings they inhabit, with modalities rang-
ing from squatting to informal rental housing.
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Figure 1: Image of the divide between formal and infor-
mal settlements in Kibera, Nairobi. Permission granted by
Johnny Miller and Unequal Scenes.

2. The neighborhoods usually lack, or are cut off from,
basic services and city infrastructure.

3. The housing may not comply with current planning
and building regulations, and is often situated in ge-
ographically and environmentally hazardous areas.

Slums, an example of informal settlements, are the most
deprived and excluded form of informal settlements. They
can be characterized by poverty and large agglomerations
of dilapidated housing, located in the most hazardous ur-
ban land, near industries and dump sites, in swamps, de-
graded soils and flood-prone zones (Kohli, Sliuzas, and Stein
2016). Slum dwellers are constantly exposed to eviction, dis-
ease and violence (Sclar, Garau, and Carolini 2005), which
stems from and leads to more severe economic and social
constraints (Wekesa, Steyn, and Otieno 2011). Although
informal settlements are well studied in the humanities
and remote sensing communities (Fincher 2003; Wekesa,
Steyn, and Otieno 2011; United Nations 2012; Huchzer-
meyer 2006; Hofmann et al. 2008) in machine learning, only
a small amount of research has been conducted on infor-
mal settlements, with all of that research using VHR and
high resolution(HR) satellite imagery (Mahabir et al. 2018;
Mboga et al. 2017; Varshney et al. 2015), a cost prohibitive
option for many NGOs and governments of developing na-
tions. In contrast, there is an abundance of freely avail-
able and globally accessible LR satellite imagery, provided
by the European Space Agency (ESA), which provides up-
dated imagery of the entire land mass of the Earth every
5 days (Wiatr et al. 2016; European Space Agency 2018a;
European Space Agency 2018b). To the authors knowledge,
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Figure 2: Two images of the same informal settlement in
Kibera, representing the difference between VHR and LR
imagery. Left: A DigitalGlobe 30cm VHR image. Right: The
Sentinel-2 10m resolution image.

no previous approaches have used LR imagery.
The ability to map and locate these settlements would

give organizations such as UNICEF and other NGOs the
ability to provide effective social and economic aid (Pais
2002). This in turn would enable those communities to
evolve in a sustainable way, allowing the people living in
those environments to gain a much better quality of life
addressing multiple of the UN sustainable development
goals (United Nations 2018). These goals aim to eliminate
poverty, increase good health and well-being, provide
quality education, clean water and sanitation, affordable
and clean energy, sustainable work and economic growth,
access to industry, innovation and infrastructure.

However, solving this problem is challenging due to
several factors. 1) It requires collaboration among multiple
parties: the NGOs, local government, the remote sensing
and machine learning communities. 2) The locations and
distribution of these informal settlements have yet to
be mapped thoroughly on the ground or aerially, as the
mapping demands dedicated human and financial resources.
This often leads to partially completed, or completely
unannotated datasets. 3) Informal settlements tend to grow
sporadically (both in space and time), which adds an addi-
tional layer of complexity. 4) Even though we have access to
satellite imagery for the entire globe, much of this raw data
is not in a usable format for machine learning frameworks,
making it difficult to extract actionable insights at scale (Xie
et al. 2015). 5) There may be no local government structure
in a particular settlement, which can inhibit our ability to
gather data quickly and make it difficult to extract good
quality ground truth data, see Section 2.

In order to address these challenges, in this work we pro-
pose a semi-automated framework that takes a satellite im-
age, directly extracted in its raw-user form and outputs a
trained classifier that produces binary maps highlighting the
locations of informal settlements.

Our first approach, the cost-effective approach, takes
advantage of the pixel level contextual information by
training a classifier to learn a unique spectral signal for in-
formal settlements. When we require finer grained features,

such as the roof size, or the density of the surrounding
settlements to determine whether or not there exists an
informal settlement, we demonstrate a second approach
that uses a semantic segmentation neural network to extract
these features, the cost-prohibitive solution. See Section 4.

To ensure that this work can be applied in the field, we
have had an active partnership with UNICEF, to understand
what we can do to facilitate their needs further and how we
can facilitate the needs of other NGOs. Because of this, we
focused on developing a system that will work in a compu-
tationally efficient and monetary effective manner. Our main
approach runs efficiently on a laptop, or desktop CPU and is
cost-effective as we only use freely available, openly acces-
sible LR satellite imagery, rather than VHR imagery which
can cost hundreds-of-thousands of dollars.
Within this paper we make the following contributions:

• We introduce and extensively validate two machine
learning based approaches to detect and map infor-
mal settlements. One is cost-effective, the other is
cost-prohibitive, but is required when contextual in-
formation is needed.

• We demonstrate for the first-time that informal set-
tlements can be detected effectively using only freely
and openly accessible LR satellite imagery.

• We release to the public two informal settlement
benchmarks for LR and VHR satellite imagery, with
accompanying ground truths.

• We provide all source code and models.

In Section 2 we provide details of the data used and the chal-
lenges involved in collecting it. In Section 3 we provide a
condensed overview of related work and current approaches.
In Section 4 we introduce details of our methodologies and
present the results of our contributions in Section 5. Finally
we conclude and present future work in Section 6.

2 Data Acquisition

In this work we use a combination of satellite imagery
and on-the-ground measurements. However, to take ad-
vantage of machine learning frameworks we require an
absolute ground truth, which facilitates robust training
and validation. Ground truth data for this project was very
sparse, in part due to the difficulties and financial costs
in obtaining the data across vast regions of developing
nations. This meant that much of the accessible data was
incomplete. Even when the data was available, it was not
necessarily in a workable format; either it was provided
as part of a PDF, with no external meta-data, or it was
simply in an inaccessible format. As part of this work we
fused these data sets together, to generate usable data sets
that can be used by the community for developing new
machine learning models. Data sets can be found here:
https://drive.google.com/drive/folders/
1yhDwR4zyPQO78x040uGCPqFarTDQ3yQm?usp=
sharing.

https://drive.google.com/drive/folders/1yhDwR4zyPQO78x040uGCPqFarTDQ3yQm?usp=sharing
https://drive.google.com/drive/folders/1yhDwR4zyPQO78x040uGCPqFarTDQ3yQm?usp=sharing
https://drive.google.com/drive/folders/1yhDwR4zyPQO78x040uGCPqFarTDQ3yQm?usp=sharing


Figure 3: Image provided by the European Space
Agency.Top: Represents the Sentinel-2 Level-1C uncor-
rected image. Bottom: Represents the Sentinel-2 Level-2A
corrected image. This lower image requires an additional
time-consuming computational step to correct for atmo-
spheric distortions in the spectral data. Our method does not
require the use of this pre-processing step.

Satellite Data
In the last ten-years there has been an exponential increase
in the number of satellites being launched due to the increase
in commercial interests. This has accelerated the amount of
satellite imagery available and continues to lower the cost
of gaining access to VHR data. However, VHR imagery can
still cost hundreds, to thousands, to hundreds-of-thousands
of dollars per image, or collection of images and is typi-
cally only available through commercial providers. Institu-
tions such as the National Aeronautics and Space Adminis-
tration (NASA) and ESA do provide a multitude of freely
available multi-spectral imagery, but this is typically of a
much lower resolution, approximately 10− 20m resolution
per pixel, and many of the fine grained features are blurred,
see Figure 2. This makes it difficult to use a deep learning
approach effectively to extract optical features that would be
required for distinguishing informal and formal settlements,
whereas the VHR imagery, less than 1m resolution per pixel,
enables us to do this, especially when we require contextual
information, Section 4.

Sentinel-2 The Sentinel-2 mission is part of the Coper-
nicus programme by the European Commission (EC). A
global earth observation service addressing six thematic ar-
eas: land, marine, atmosphere, climate change, emergency
management and security through its Sentinel missions.
ESA is responsible for the observation infrastructure of the
Sentinels (Copernicus 2018). The data provided by the Sen-
tinels has a free and open data policy implying that the data
from the Sentinel missions is available free of charge to ev-
eryone. The ease of data access and use, allows all users
from the public, private or research communities to reap the
socio-economic benefits of such data (Wiatr et al. 2016).
A Sentinel-2 image is provided to the end user at Level-
1C (European Space Agency 2018c) and has already gone
through a series of pre-processing steps before it reaches the
end user. However, these images have not been corrected for
atmospheric distortions. This correction requires additional
processing time to convert the image into Level-2A prod-
uct, resulting in bottom of the atmosphere reflectances, see
Figure 3 for a comparison. Within this work we directly use
the Level-1C images for our computationally and cost effi-

Figure 4: An example of annotated ground truth map. Left:
The city is Mumbai, the white dots represent informal settle-
ments and the black dots represent the environment. Right:
The Sentinel-2 image of Mumbai.

cient approach, mitigating the need to do the computation-
ally costly processing.

Multi-spectral Data The Sentinel-2 satellites map the
entire global land mass every 5-days at various resolutions
of 10 to 60m per pixel, which means that each pixel
represents an area of between 10m2 to 60m2. At each
resolution, spectral information at the top of the atmo-
sphere (TOA) is provided, creating a total of 13 spectral
bands covering the visible, near infrared (NIR) and the
shortwave infrared (SWIR) part of the electromagnetic spec-
trum (European Space Agency 2018c; Zhang et al. 2017;
Drusch et al. 2012). Although there are 13 spectral bands
in total, we exclude bands 1, 9 and 10 as they interfere
strongly with the atmosphere due to their 60m resolution.
This means that we only use the bands 2, 3, 4, 5, 6, 7, 8, 8A,
11, 12 as these bands have minimal interactions with the
atmosphere and are provided at either a 10m or 20m spatial
resolution.

Very-High-Resolution Satellite Images In addition to
freely available multi-spectral LR satellite images, we use
VHR images with a resolution of up to 30cm per pixel,
kindly provided by DigitalGlobe through Satellite Appli-
cations Catapult. See Figure 2 to see the difference in res-
olution between Sentinel-2 and VHR imagery.We empha-
size that VHR imagery is only used in the cost-prohibitive
method.

Annotated Satellite Imagery

We have annotated satellite imagery for the locations of in-
formal settlements in parts of Kenya, South Africa, Nige-
ria, Sudan, Colombia and Mumbai. We then project these
masks on to the satellite image and extract the neces-
sary spectral information at those specific points, see Fig-
ure 4 for a example of an annotated ground truth map.
We have open sourced the necessary code to do this
here: https://github.com/FrontierDevelopmentLab/informal-
settlements/.

https://github.com/FrontierDevelopmentLab/informal-settlements/
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3 Related Work
Recent publications applying machine learning to remote
sensing data, in particular to satellite imagery, that have fo-
cused on detecting, or mapping informal settlements (Xie
et al. 2015; Varshney et al. 2015; Mboga et al. 2017;
Mahabir et al. 2018; Kuffer, Pfeffer, and Sliuzas 2016;
Asmat and Zamzami 2012; Kohli, Sliuzas, and Stein 2016)
have typically been trained on a specific region, or fea-
ture in combination with VHR (Stasolla and Gamba 2008;
Gevaert et al. 2016; Stasolla and Gamba 2008; Kuffer, Pf-
effer, and Sliuzas 2016). The approaches most in spirit
to our own are (Varshney et al. 2015; Xie et al. 2015;
Jean et al. 2016). Varshney et al. focus on detecting roofs
in Eastern Africa using a template matching algorithm and
random forest, they take advantage of Google Earths’ API to
extract high resolution imagery, which although is free to re-
searchers, is not openly available to everyone. Xie et al. and
Jean et al. use a mixture of data sources and transfer learn-
ing across different data sets to generate poverty maps by
taking advantage of night time imagery through the National
Oceanic and Atmospheric Administration (NOAA) and day-
time imagery through Google Earths’ API. However, to our
knowledge there exists no previous work on predicting infor-
mal settlements solely from LR data, or predicting informal
settlements in the way that we present here. This inhibits
our ability to benchmark against previous methods. Thus,
by providing the data sets and the baselines in this paper, we
provide a robust way to compare the effectiveness of any fu-
ture approaches and facilitate the creation of new machine
learning methodologies.

4 Methods
In this section, we describe our approaches for detecting
and mapping informal settlements. We introduce two dif-
ferent methods; a cost-efficient method and cost-prohibitive
method. Our first method trains a classifier to learn what
the spectrum of an informal settlement is, using LR freely
available Sentinel-2 data. To do this, we employ a pixel-
wise classification, where the system learns whether or not
a 10-band spectra is associated to an informal settlement or
the environment, which encompasses everything that is not
an informal settlement. Our second method, is a semantic
segmentation deep neural network that uses VHR satellite
imagery, which is useful when informal settlements do not
have unique spectra when compared to the environment, like
those in Sudan, see Figure 5.

Cost Effective Method
Canonical Correlation Forests (CCFs) (Rainforth and
Wood 2015) are a decision tree ensemble method for
classification and regression. CCFs are the state-of-the-art
random forest technique, which have shown to achieve re-
markable results for numerous regression and classification
tasks (Rainforth and Wood 2015). Individual canonical
correlation trees are binary decision trees with hyperplane
splits based on local canonical correlation coefficients
calculated during training. Like most random forest based
approaches, CCFs have very few hyper-parameters to tune

and typically provide very good performance out of the
box. All that has to be set is the number of trees, ntrees.
For CCFs, setting ntrees = 15 provides a performance
that is empirically equivalent to a random forest that has
ntrees = 500 (Rainforth and Wood 2015), meaning CCFs
have lower computational costs, whilst providing better
classification. CCFs work by using canonical correlation
analysis (CCA) and projection bootstrapping during the
training of each tree, which projects the data into a space
that maximally correlates the inputs with the outputs. This
is particularly useful when we have small datasets, like in
our case, as it reduces the amount of artificial randomness
required to be added during the tree training procedure and
improves the ensemble predictive performance (Rainforth
and Wood 2015).

The computational efficiency aspects of CCFs and their
suitability to both small and large datasets, makes them ideal
for detecting informal settlements for three reasons. First,
many of the organisations that we aim to help will not have
access to a large amount of compute resources, therefore
computational efficiency is important. Second, to run the
CCFs for both training and prediction, all that has to be
called is one function. This ensures that the end user does
not need to be an expert in ensemble methods and makes the
method akin to plug and play. Finally, some of our ground
truth data sets are relatively small, which means that we
must use the data as efficiently as possible, which CCFs al-
low us to do. When VHR and computational cost are not a
restriction we can employ a deep learning approach using
convolution neural networks (CNN) to detect informal set-
tlements.

Cost Prohibitive Method
Since informal settlements can also be classified by the
rooftop size and the surrounding building density, we em-
ploy a state-of-the-art semantic segmentation neural network
on optical (RGB) VHR satellite imagery to detect these
contextual features. These contextual features are important
when it is not possible to distinguish informal settlements
from the environment by spectral signal in the same region.
An example of such an informal settlement is shown in Fig-
ure 5. We see that the informal settlements in a rural region
of Al Geneina, Sudan have a very low building density, and
also the roof tops of both formal and informal settlements
are built out of concrete, meaning they have the same spec-
tral signal. This is in contrast to the dense slums in Nairobi
and Mumbai.

Encoder-Decoder with Atrous Separable Convolution
For the task of semantic segmentation of informal settle-
ments we use the DeepLabv3+ encoder-decoder architec-
ture. DeepLabv3+ (Chen et al. 2018) is a deep CNN that
extends the prior DeepLabv3 network (Chen et al. 2017)
with a decoder module to refine the segmentation results
of the previous encoder-decoder architecture particularly at
the object boarders. The DeepLab architecture uses Atrous
Spatial Pyramid Pooling (ASPP) with atrous convolutions to
explicitly control the resolution at which feature responses



Figure 5: A VHR image comparing an informal, left and for-
mal settlement, right, in Al Geneina, Sudan. The main dis-
tinguishing feature is the wider contextual information, as
the material spectrums are the same.

are computed within the CNN. This ASPP module is aug-
mented with image level features to capture longer range
information. We use a Xception 65 network backbone in
the encoder-decoder architecture. The beneficial use of this
Xception model together with applying depth wise separa-
ble convolution to ASPP and the decoder modules have been
shown in (Chen et al. 2018).

Implementation details We train the entire network end-
to-end with the usual back-propagation algorithm using
eight Tesla V100 GPUs with 16 GBs of memory each.
We initialize the layer weights using those from the pre-
trained PASCAL VOC 2012 model (Everingham et al.
2012). We then fine-tune in turn the finer strides on the train-
ing/validation data. We train our deep network with a batch
size of 32, an initial learning rate of 0.001 and a learning
rate decay factor of 0.1 every 2.000 steps until convergence.
Our experiments are based on a single-scale evaluation. All
other hyper-parameters are the same as in the DeepLabv3+
model (Chen et al. 2018).

5 Results
Experimental Setup For each region we have a 10-20m
resolution Sentinel-2 image, the corresponding VHR 30-
50cm resolution image and the ground truth annotations.
We have ensured that the images and annotations are
aligned in space and time to reduce any additional noise
in the data. When training and validating a model on the
same region we use a 80-20 split. We ensure that each class
contains the same number of points, we then randomly
sample 80% of each class to generate the training data and
then use the remaining 20% of each class to construct our
test set, which is comprised of a different set of points. We
then center the training data (testing data accordingly) to
have a mean of zero and standard deviation of one. We set
the ntrees = 10 for training the CCF. For validating our
methods we report both pixel accuracy, and mean intersec-
tion over union (IoU). We use the standard definition of
mean IOU, meanIOU = 1

nclass

tii
(ti+

∑
j
nji−nii)

and pixel

classification, pxclass =

∑
i
nii

ti
, where nclass is the total

number of classes, nij is the number of pixels of class i

predicted to belong to class j, and ti is the total number of
pixels of class i in ground truth segmentation.

We provide a comparison of both the pixel-wise classi-
fication with CCFs and the contextual classification with
CNNs for the detection and mapping of informal settle-
ments, see Table 1. The CCFs trained solely on freely avail-
able and easily accessible low-resolution data perform well,
although they are unable to match the performance of the
CNN trained on VHR imagery, except for Kibera. Figure 6
shows the predictions of both methods and the ground truth
annotations. Despite having access to very high resolution
data, the CNN still manages to miss-classify structural el-
ements of the informal settlements in Kibera. Whereas the
CCF, although more granular, incorporates the full structure
of the informal settlement in Kibera via only the spectral in-
formation.

Generalizability To demonstrate the adaptability of our
approach we train each model on different parts of the world
and use that model to perform predictions on other unseen
regions across the globe. For this paper we train two models,
one on Northern Nairobi, Kenya and another on Medellin,
Colombia. The results can be found in Table 2. Even though
we only have a small amount of data, we are able to demon-
strate that our models can generalize moderately well, even
with data that is noisy and partially incomplete. We provide
several more results in the supplementary materials.

Pixel Acc. Mean IOU

Region CCF CNN CCF CNN

Kenya, Northern Nairobi 69.4 93.1 62.0 80.8
Kenya, Kibera 69.0 78.2 73.3 65.5
South Africa, Capetown* 92.0 - 33.2 -
Sudan, El Daien 78.0 86.0 61.3 73.4
Sudan, Al Geneina 83.2 89.2 35.7 76.3
Nigeria, Makoko* 76.2 87.4 59.9 74.0
Colombia, Medellin* 84.2 95.3 74.0 83.0
India, Mumbai* 97.0 - 40.3 -

Table 1: Pixel accuracy and mean IOU (%) results for infor-
mal settlement detection using the CCF pixel-wise classifi-
cation and the contextual classification with CNNs. CCFs
are trained and tested on low resolution imagery, CNNs are
trained and tested on VHR imagery. *Represents that the
ground truth annotations are less than 75% complete for the
region.

6 Conclusions and Future Work
Conclusion In this work we have composed a series of
annotated ground truth datasets and have provided for the
first time benchmarks for detecting informal settlements. We
have provided a comprehensive list of the challenges faced
in mapping informal settlements and some of the constraints
faced by NGOs. In addition to this, we have proposed two
different methods for detecting informal settlements, one a
cost-effective method, the other a cost-prohabitive method.
The first method used computationally efficient CCFs to



Figure 6: Predictions of informal settlements (white pixels) in Kibera, Nairobi. Left: The CCF prediction of informal settlements
in Kibera on low-resolution Sentinel-2 spectral imagery. Middle: Deep learning based prediction of informal settlements in
Kibera, trained on VHR imagery. Right: The ground truth informal settlement mask for Kibera.

Pixel Acc. Mean IOU

Region NN M NN M

Kenya, Northern Nairobi 69.4 55.0 62.0 54.4
Kenya, Kibera 67.3 63.8 54.1 56.0
South Africa, Capetown* 41.3 71.5 43.1 32.0
Sudan, El Daien 14.2 1.1 37.9 34.0
Sudan, Al Geneina 27.1 6.0 34.9 41.0
Nigeria, Makoko* 59.0 77.0 37.8 34.6
Colombia, Medellin* 65.0 84.2 46.9 74.0
India, Mumbai* 37.9 63.0 32.4 34.4

Table 2: Pixel accuracy and mean IOU (%) results for in-
formal settlement detection using pixel-wise classification
with CCFs trained on a particular region and testing on all
other regions. Results are for a model trained on Northern
Nairobi (NN) and a model trained on Medellin (M). * Rep-
resents that the ground truth annotations are less than 75%
complete for the region.

learn the spectral signal of informal settlements from LR
satellite imagery. The second used a CNN combined with
VHR satellite imagery to extract finer grained features. We
extensively evaluated the proposed methods and demon-
strated the generalization capabilities of our methods to de-
tect informal settlements not just in a local region, but glob-
ally. In particular, we demonstrated for the first time that
informal settlements can be detected effectively using only
freely and openly accessible multi-spectral low-resolution
satellite imagery.

Future work Because of the uncertainties within the
ground truth annotations and the differences in informal
settlements across the world, we believe that this prob-
lem would be very useful for testing transfer learning and
meta-learning approaches. In addition to this, Bayesian ap-
proaches would enable us to characterize these uncertain-
ties via probabilistic models. This would provide an affec-
tive way to create adaptable models that learn what it means
for an informal settlement to be informal, as the model ab-
sorbs new information.

It is also interesting to note that a 1 km2 area containing
informal settlements could house up to 129089 people (Des-
groppes and Taupin 2011) and so each pixel could represent
up to 13 people 1. This therefore allows us to also add pop-

1100m2 = 0.00001km2, therefore 129089 × 0.00001 ∼ 13

ulation estimates to our maps, which UNICEF state is also
crucial. This would enable governments and NGOs to un-
derstand how much infrastructure is required and how much
aid needs to be provided. Although we could have added
population estimates in this current work, we have chosen to
omit them as it would be irresponsible of us to provide es-
timates when not enough ground truth data exists, regarding
average population numbers in informal settlements. We are
actively working with UNICEF to gather more ground truth
data for this and additional annotations for informal settle-
ments, as UNICEF would actively like to deploy a system
like the one that we have developed here to provide both
mapping and population estimates of rural and urban infor-
mal settlements.
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Supplementary Material

1 Overview
Within this supplementary material we provide several additional results for both pixel classification and
mean IOU relating to the pixel-wise classification of informal settlements with CCFs, Section 2. The
results reflect predictions for all models trained on one region and then predicting on all other unseen
areas.

2 Informal Settlement Pixel-wise Classification Results
In this section we provide all results generated by the CCF on all informal settlement datasets at our
disposal. We present two sets of results for Capetown.

• Capetown with Ground Truth (CapetownGT) - This represents around 20km2 region of Capetown
(11% of the city). This data is annotated and it was used in the main paper.

• Capetown - This represents the whole of Capetown, however, we only have annotations for the
region mentioned above (CapetownGT).
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Country Colombia India Kenya Nigeria South Africa Sudan
City Medellin Mumbai N. Nairobi Kibera Kianda Mokako Capetown CapetownGT AlGeneina ElDaein

Model Mumbai

Informal 78.35 97.18 71.44 74.84 89.23 94.81 80.88 89.10 21.00 10.96
Environment 36.32 95.92 43.37 51.65 31.33 28.53 56.45 43.11 68.19 83.71

Model Capetown

Informal 96.86 98.00 99.21 96.52 100.00 99.73 98.77 99.61 99.99 99.90
Environment 9.80 46.97 9.07 10.12 4.03 7.27 96.33 15.22 0.23 0.10

Model CapetownGT

Informal 83.77 73.94 93.59 82.16 96.13 95.32 84.78 92.34 99.48 90.82
Environment 51.69 85.41 40.25 45.33 22.23 24.60 82.68 93.33 2.53 5.99

Model N. Nairobi

Informal 64.65 37.91 69.45 67.63 90.33 58.55 36.06 41.33 27.07 14.18
Environment 63.64 62.44 69.27 73.44 50.75 53.85 75.21 81.57 68.77 89.17

Model Kibera

Informal 48.23 40.82 63.65 67.84 79.56 57.71 46.50 45.07 30.96 31.31
Environment 72.04 27.18 76.56 75.56 67.73 58.38 54.76 55.92 62.13 65.53

Model Kianda

Informal 45.23 43.18 62.57 61.09 90.97 46.64 24.45 26.79 68.75 53.73
Environment 82.06 60.65 85.33 83.49 75.48 62.19 77.23 86.27 36.50 57.57

Model AlGeneina

Informal 81.21 66.80 80.73 79.76 85.36 56.07 52.94 60.52 83.17 94.68
Environment 46.79 48.97 49.71 31.87 17.26 38.46 76.21 63.86 79.43 5.25

Model ElDaein

Informal 24.07 9.50 46.58 54.11 71.82 8.37 29.90 25.65 68.52 78.16
Environment 76.61 40.11 67.18 71.47 71.20 85.19 48.91 61.22 30.61 71.65

Model Mokako

Informal 17.33 69.43 10.67 14.15 13.54 76.27 35.60 34.76 5.53 10.57
Environment 85.22 39.06 89.91 94.07 94.37 80.84 60.91 61.89 92.97 88.51

Model Medellin

Informal 84.06 62.95 54.10 63.84 88.12 77.00 63.38 71.46 5.66 1.09
Environment 79.88 63.02 85.79 78.85 47.00 37.45 62.01 57.68 96.28 95.78

Table 1: Pixel classification scores. The Model row represents the model that has been trained on the
stated city and the columns represent the city on which that trained model is making a prediction on.
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Country Colombia India Kenya Nigeria South Africa Sudan
City Medellin Mumbai N. Nairobi Kibera Kianda Mokako Capetown CapetownGT AlGeneina ElDaein

Model Mumbai

Informal IOU 31.23 68.58 41.42 45.04 30.14 27.74 56.32 42.83 55.82 59.81
Environment IOU 42.45 12.17 16.08 40.91 29.50 41.21 1.82 6.15 9.84 8.04
Mean IOU 36.84 40.37 28.75 42.97 29.82 34.47 29.07 24.49 32.83 33.92

Model Capetown

Informal IOU 9.57 46.93 9.06 9.92 4.03 7.26 32.00 15.22 0.23 0.09
Environment IOU 44.07 7.53 15.20 37.97 26.14 37.11 1.44 4.74 21.95 30.96
Mean IOU 26.82 27.23 12.13 23.94 15.09 22.18 16.72 9.98 11.09 15.53

Model CapetownGT

Informal IOU 46.06 84.43 39.83 40.97 21.94 23.98 82.54 57.74 2.53 5.76
Environment IOU 51.03 17.16 20.20 42.36 29.22 40.19 4.60 8.81 22.33 29.34
Mean IOU 48.55 50.80 30.02 41.67 25.58 32.08 43.57 33.28 12.38 17.55

Model N. Nairobi

Informal IOU 50.26 60.77 80.99 61.79 49.14 43.86 74.67 78.82 57.08 64.38
Environment IOU 43.60 3.98 42.15 46.46 36.87 31.83 1.41 7.44 12.81 11.43
Mean IOU 46.93 32.38 61.57 54.12 43.00 37.84 38.04 43.13 34.95 37.90

Model Kibera

Informal IOU 51.83 26.49 72.33 78.51 63.33 47.37 54.42 54.16 52.05 50.09
Environment IOU 35.17 2.33 26.25 68.11 40.79 32.84 1.03 4.15 13.18 17.71
Mean IOU 43.50 14.41 49.33 73.31 52.06 40.11 27.73 29.16 32.61 33.90

Model Kianda

Informal IOU 58.10 59.17 80.38 68.05 68.33 48.09 76.57 82.69 33.56 47.67
Environment IOU 36.53 4.35 33.07 47.61 50.43 27.63 1.06 6.25 21.07 27.62
Mean IOU 47.31 31.76 56.72 57.83 59.38 37.86 38.81 44.47 27.31 37.65

Model AlGeneina

Informal IOU 40.99 48.26 48.19 28.51 16.44 30.98 75.80 62.40 41.20 5.12
Environment IOU 47.58 5.31 19.90 36.78 24.84 26.45 2.12 6.15 30.17 30.43
Mean IOU 44.29 26.79 34.04 32.64 20.64 28.71 38.96 34.28 35.69 17.78

Model ElDaein

Informal IOU 48.74 38.57 61.75 56.39 64.98 56.66 48.52 58.64 28.13 68.01
Environment IOU 18.36 0.65 15.55 36.33 38.86 6.59 0.58 2.56 19.73 54.78
Mean IOU 33.55 19.61 38.65 46.36 51.92 31.63 24.55 30.60 23.93 61.39

Model Mokako

Informal IOU 52.52 38.54 78.39 62.69 72.95 63.65 60.46 59.59 73.49 63.16
Environment IOU 14.48 4.69 6.61 12.84 11.61 56.05 0.90 3.55 4.42 8.42
Mean IOU 33.50 21.61 42.50 37.77 42.28 59.85 30.68 31.57 38.96 35.79

Model Medellin

Informal IOU 75.06 62.00 79.78 65.12 45.18 33.33 61.76 56.72 76.12 66.33
Environment IOU 72.73 6.71 29.03 46.84 34.41 36.01 1.64 6.46 4.99 0.99
Mean IOU 73.90 34.36 54.40 55.98 39.79 34.63 31.70 31.59 40.56 33.66

Table 2: Intersection Over Union (IOU) results. The Model row represents the model that has been
trained on the stated city and the columns represent the city on which that trained model is making a
prediction on.
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