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Abstract 

New technologies, particularly those which are deployed rap-
idly across sectors, or which have to operate in competitive 
conditions, can disrupt previously stable technology govern-
ance regimes. This leads to a precarious need to balance cau-
tion against performance while exploring the resulting ‘safe 
operating space’. This paper will argue that Artificial Intelli-
gence is one such critical technology, the responsible deploy-
ment of which is likely to prove especially complex, because 
even narrow AI applications often involve networked (tightly 
coupled, opaque) systems operating in complex or competi-
tive environments. This ensures such systems are prone to 
‘normal accident’-type failures which can cascade rapidly, 
and are hard to contain or even detect in time. Legal and gov-
ernance approaches to the deployment of AI will have to 
reckon with the specific causes and features of such ‘normal 
accidents’. While this suggests that large-scale, cascading er-
rors in AI systems are inevitable, an examination of the oper-
ational features that lead technologies to exhibit ‘normal ac-
cidents’ enables us to derive both tentative principles for pre-
cautionary policymaking, and practical recommendations for 
the safe(r) deployment of AI systems. This may help enhance 
the safety and security of these systems in the public sphere, 
both in the short- and in the long term.  
 
Keywords. Ethical design and development of AI systems; 
AI and Law; trust and explanations in AI systems; normal 
accident theory 

 Introduction    

New technologies, particularly those which are deployed 

rapidly across industries, or which can offer a (economic, 

political, military) edge, frequently disrupt previously stable 

international governance arrangements or power distribu-

tions. The introduction of such technology can therefore be 

followed by a period of uncertainty and risk, as policymak-

ers, operators and public seek to grasp their societal and op-
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erational implications. This leads to a precarious need to bal-

ance caution against performance while exploring the ‘safe 

operating space’ of said critical technology. 

AI: progress & applications  

Artificial Intelligence is one such critical technology. In re-

cent years, the field of artificial intelligence (AI) has ad-

vanced at a rapid pace. While AI researchers and experts still 

differ in their assessment of when, if ever (Plebe and 

Perconti 2012; Dietterich and Horvitz 2015), we may expect 

the achievement of ‘general’ artificial intelligence, (Baum, 

Goertzel, and Goertzel 2011; Armstrong and Sotala 2012; 

Brundage 2017; Müller and Bostrom 2016), today’s narrow 

artificially intelligent systems already match or outperform 

humans across many narrow domains. In just the past three 

years—to provide an incomplete list—AI systems have 

proven that they can meet or exceed human performance in 

object image recognition (Linn 2015), speech transcription 

and direct translation (Xiong et al. 2016; Castelvecchi n.d.; 

Lewis-kraus 2016). AI systems have learned how to drive 

(Bryant 2016); can parse paragraphs to answer questions 

posed (Metz 2017); recognize human faces (even in blurred 

pictures) and some emotions (Newman 2016); can create 

new encryption schemes and detect malware (Abadi and 

Andersen 2016; Musthaler 2016); identify crop diseases 

(Furness 2016); teach themselves the ancient game of go in 

mere days (Silver et al. 2017, 2016), and write cookbooks, 

news articles, music and published poetry (Mascarenhas 

2016; Marshall 2017; Scholl 2015; Kleeman 2016). As a re-

sult, these systems are beginning to see wider adoption in a 

broad range of applications—across fields as diverse as 

stock markets, transport infrastructure, healthcare, agricul-

ture, education, cybersecurity and the military.  
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Mapping AI Governance Challenges  

Along with the immense appeal, there is a growing recogni-

tion amongst policymakers that the development and de-

ployment of AI brings ethical, political, societal and opera-

tional risks, and will even pose systemic challenges for reg-

ulation and governance frameworks (OSTP 2016; US Sen-

ate Subcommittee on Space, Science and Competitiveness 

2016; House of Commons Science and Technology Com-

mittee 2016; China’s State Council 2017). These challenges 

can loosely be grouped in two straightforward categories—

‘(ab)use’ and ‘accident’. 

AI governance challenges from (ab)use 

Many of the greatest challenges posed by AI, derive from 

their systemic use by many actors, who deploy these sys-

tems either to enable greater legibility or facility in the ex-

ercise of power, or in a competitive context—whether eco-

nomic, political, or military. Thus, domestically, the impact 

of introducing even ‘narrow’ artificial intelligence systems 

may result in far-reaching technological unemployment 

(Brynjolfsson and McAfee 2014; Hanson 2016), compre-

hensive erosion of privacy (Calo 2010); over-dependency 

on social robots (Lin, Abney, and Bekey 2011; Weng 2010); 

increased inequality and societal dysfunction as a result of 

machine bias (Crawford and Calo 2016), or as a result of 

(perceived) electoral manipulation, and political polariza-

tion as a result of pervasive customized ‘computational 

propaganda’ (Woolley and Howard 2016). Moreover, the 

automation of social-media identity theft (Bilge et al. 2009), 

as well as automated system-vulnerability-detection and 

victim-customized social-engineering attacks—as illus-

trated by the ‘Mayhem’ AI in the 2016 DARPA Grand 

Cyber Challenge, and by tools such as ‘WifiPhisher’, re-

spectively (DARPA 2016; wifiphisher [2014] 2017)—sug-

gest an unprecedented increase in hazards on cyberspace, 

from both criminal and state actors. 

 In a global context, meanwhile, the integration of lethal 

autonomous weapons systems with ‘war-algorithms’ (D. A. 

Lewis, Blum, and Modirzadeh 2016), amongst a host of 

other emerging AI battlefield applications (Maas, Sweijs, 

and De Spiegeleire 2017), raises deep ethical, legal, and op-

erational ramifications (Nehal et al. 2016; Scharre 2016a; 

Roff 2014). For instance, enhanced surveillance capabilities 

and autonomous weapons may also disrupt established stra-

tegic landscapes, entrenching authoritarian regimes’ ability 

to monitor dissent and deploy centralized stand-off force 

projection capabilities (Horowitz 2016; Horowitz, Kreps, 

and Fuhrmann 2016). Moreover, autonomous weapons sys-

tems enable at-cost swarming tactics, in which an adver-

sary’s defensive measures (i.e. point-defense systems) are 

overwhelmed by sustained simultaneous attacks. This tech-

nological innovation overturns a prevailing tactical offense-

defense balance, possibly upsetting global equilibria by put-

ting a premium on pre-emption (Rickli 2017). The deploy-

ment of dispersed autonomous systems, along with AI-ena-

bled advances in sensing and data analysis capabilities, 

might even put at risk the stability of existing nuclear deter-

rence dyads, by rendering previously ‘secure’ nuclear assets 

(such as ballistic missile submarines) vulnerable once more 

(Littlefield n.d.; Courtland 2016; The Economist 2016; 

Lieber and Press 2017; Hambling 2016). 

AI governance challenges from accident 

Right along with the governance challenges posed by the 

‘systemic’ or ‘intended’ deployment of AI, however, new 

AI governance approaches will also have to reckon with un-

derlying operational risks from failure. While regulatory ap-

proaches or governance systems are no stranger to (indus-

trial) accidents involving new (even robotic) technologies, 

they may be prone to misunderstanding the scale and intrac-

tability of the safety challenges posed by deployed AI sys-

tems. Critically, an anecdotal reliance on familiar accidents 

involving ‘embodied’ robots (such as factory robots, or au-

tonomous cars) or on ‘malfunctioning chatbots’ as the type 

specimens for ‘AI accident risks’, is likely to lead us to mis-

understand the causes and dynamics of cascading accidents 

involving networked and opaque AI systems. Worse, it may 

lead us to underestimate their frequency, scale, and reach.  

 Empirically, leading AI architectures have demonstrated 

risks of ‘flash crashes’ amongst other failure modes (Yam-

polskiy and Spellchecker 2016; Scharre 2016a, 35–36), and 

demonstrate behaviour which can be intrinsically difficult to 

anticipate (in the context of evolutionary programming ar-

chitectures) or reconstruct and explain post-accident (in the 

case of deep learning and certain neural network architec-

tures). There exists an incipient and broad research agenda 

examining ‘concrete problems in AI Safety’ (Amodei et al. 

2016), to avoid unexpected and unwanted side effects as AI 

systems become more advanced and/or are deployed to 

more complex environments, but this valuable research pro-

gram is at present still at an early stage. 

 This is a key problem, in light of the deployment and in-

tegration of increasingly capable AI systems across soci-

ety—from the financial sector to the penal system, and from 

critical infrastructure to the military. There is a wide range 

of potential principles informing AI regulatory regimes, 

whether the precautionary principle; ‘responsible research 

and innovation’ paradigm (Stilgoe, Owen, and Macnaghten 

2013; Brundage 2016); ‘differential technological progress’ 

(Bostrom 2002), or some other set of emerging norms or 

policy desiderata (Bostrom, Dafoe, and Flynn 2017). Yet the 

observation of recurring errors in AI systems suggests that 

these governance regimes must also consider the problem of 

‘normal accidents’—not as a possibility, but as an inevita-

bility.  



AI accidents as ‘normal’ accidents  

Developed by Charles Perrow in the wake of the Three Mile 

Island nuclear reactor meltdown (Perrow 1984), ‘normal ac-

cident theory’ has been applied to understand catastrophic 

technological failure across a wide range of domains, rang-

ing from the Apollo 13, Challenger and Columbia spacecraft 

accidents (Perrow 1984, 23) to false-alarms and near-acci-

dents plaguing the US nuclear forces (Sagan 1993); and 

from the Air France 447 crash to the 2003 Gulf War ‘Patriot 

fratricides’—where faulty IFF systems led semi-autono-

mous coalition air defenses to shoot down friendly aircraft 

(Scharre 2016a, 30–33), to name but a few.  

 ‘Normal accident’ theory analyzes how accidents at the 

crux of mechanical, software, operator and organizational 

failures. It is this systemic perspective which makes normal 

accident theory so useful in understanding the hazards and 

failure-modes of deployed AI systems; while each new tech-

nology should of course be assessed on its own characteris-

tics, there are also valuable lessons we can derive from our 

past experience with strategically powerful technologies. 

While on an object (or scientific) level, AI is of course a 

profoundly different technology from, say, nuclear weap-

ons, on an operational level, they share key features which 

make these assemblages (sensors, algorithms, human oper-

ators) prone to normal accidents.  

(1) AI systems are complex and opaque  

Normal accident theory focuses on system applications that 

are complex and tightly coupled. Complex systems are those 

which have many interlocking parts, ‘black-boxed’ pro-

cessing units, or hidden interactions—constellations of 

feedback loops which cannot be observed or fully under-

stood directly or in real-time, but only imperfectly inferred, 

based on aggregate behavior. This makes the system more 

complex than can be properly understood by the human op-

erator (Perrow 1984, 9). Moreover, there are many common 

mode connections, where it is not (immediately) clear which 

components have failed when there is an overall failure.  

 Tightly coupled means that “there is no slack or buffer or 

give between two items. What happens in one directly af-

fects what happens in the other.” (Perrow 1984, 89–90). For 

instance, in the context of the US nuclear force, scholars 

have recorded how the tightly interlinked web of early 

launch warning satellites, Chrome Dome aircraft, and com-

mand-and-control nodes, created a large scope for small 

technical failures or operator errors to rapidly cascade 

throughout the system, creating major false alarms (Sagan 

1993; Schlosser 2014).  

 Critically, emerging AI systems meet all of the relevant 

criteria to exhibit ‘normal accidents’: many AI algorithms 

are ‘black boxes’, complex in design or operation. Like all 

software programs, they almost by default contain bugs— 

past studies have estimated that the software industry sees 

an average error rate of 15-50 errors per 1,000 lines of code 

(McConnell 2004; Scharre 2016a, 13). The problem of com-

plexity is acute for many approaches in machine learning, in 

particular. These networks are intrinsically opaque—it is 

impossible to produce a formal proof of their behavior; they 

can be stochastic; and it is difficult to adequately anticipate 

all real-world scenarios, or to test a system’s reactions to 

them, within a simulated sandbox (Borrie 2014, 8–9). Criti-

cally, while work on the ‘interpretability’ of machine learn-

ing decisions is advancing—compare DARPA’s work on 

‘explainable’ AI (DARPA, n.d.; Doran, Schulz, and Besold 

2017)—this field is still in its infancy. AI systems as a result 

also suffer from common-mode failures, as it can be unclear 

where the error has originated—whether in sensor fault; un-

derlying bias in the training datasets, adversarial input or in-

fection by a virus, or some other component. 

 The opacity of leading AI systems also leads to an addi-

tional problem, in that it inhibits operator’s critical ability to 

learn from ‘near-accidents’ or ‘close calls’. After all, for cer-

tain AI applications, it may be unclear what would be the 

signature of such a ‘near-accident’. We may not get many 

warning shots, and past performance of a system may not 

adequately prepare us for the scope of eventual failure.  

(2) AI systems are tightly-coupled and fast 

Moreover, many AI applications are tightly coupled, involv-

ing fast interactions and reaching and executing decisions at 

a speed that arguably exceeds the coupling of past systems 

(such as nuclear reactors) prone to normal accidents. The 

tight coupling and high operational speed are key features 

of AI systems which are plugged into extensive networks 

(such as the Internet of Things), or which operate in com-

petitive environments such as high-frequency trading mar-

kets, in cyberspace or on the battlefield. The speed of AI 

operation ensures that when errors inevitably emerge, they 

are not just difficult to detect, but are also hard to halt in 

time. This suggests that having a human operator ‘on-the-

loop’ is not always viable, if interaction speeds are high 

enough.  

 Worse, redundancies and safety measures built into an AI 

system can actually cause accidents. This is because features 

such as self-performance-monitoring sensors or -software, 

automated fail-safes, or behavioural tripwires (Bostrom 

2014, 137) may increase the overall complexity of a system. 

They add more ‘interacting parts’ which themselves can qui-

etly fail or react in unanticipated ways. In this way, techno-

logical safety measures may hinder problem isolation. At 

the same time, research has shown that automated safety 

systems can instill a blanket trust (‘automation bias’) in op-

erators or users—a trust that may, perversely, encourage 

greater risk-taking by those users as a result of risk homeo-

stasis (Cummings 2004; Borrie 2014, 12). Moreover, as 



demonstrated by the ‘Patriot fratricides’, automation bias 

may cause human operators who are nominally in-the-loop 

to nonetheless trust the system without question, authorizing 

even incorrect action requests by force of habit (Hawley 

2011; Scharre 2016a, 31).  

(3) AI trainers and operators have multiple 

objectives beyond safety 

The technical propensity of AI systems to normal accidents 

(their complexity and tight coupling), will likely be exacer-

bated by the incentives of the principals that run them. This 

is because the designers, trainers, and operators of AI sys-

tems may in practice encounter multiple, conflicting organ-

izational objectives beyond pure ‘safety’.  

 At the level of AI developers and trainers, there may be 

restrictions on error feedback and on learning from inci-

dents. This is the case both within companies (for instance, 

when working towards a tight software deployment dead-

line, and reporting apparently insignificant ‘anomalies’ 

would be an inconvenience), as well as between them (for 

instance, when it is feared that sharing details on security 

incidents may give away critical information about an AI’s 

architecture or the initial settings of its algorithms). 

 On an operator level, there is a tension between automat-

ing functions to allow for rapid functioning, and decoupling 

& decentralizing them, to enable flexible error response. 

More obviously, for operators, safety often must be traded 

off against performance (Sagan 1993, 13; P. Lewis et al. 

2014): some AIs, for instance those used to automate cyber-

security penetration testing, may be designed to come up 

with ‘unintuitive’ solutions and to test these rapidly. Of 

course, we necessarily and understandably accept some risk 

when using many technologies—possibly only an inert sys-

tem would be perfectly (and knowably) safe. Yet the impact 

of these errors can be particularly high once AI systems are 

integrated in major infrastructures. 

(4) Competitive pressures exacerbate opera-

tional risk of AI 

Because of the above, many AI systems are likely to demon-

strate at least some propensity towards normal accidents. 

Yet there are some exceptions.  

 In the first place, in contexts where the decisions made by 

the AI are less tightly coupled to (irreversible) physical out-

comes, the system may be less susceptible to normal acci-

dents, and risks may be modest or manageable. For instance, 

while algorithms trained on biased datasets are a real and 

pressing problem when applied to, for instance, sentencing 

or incarceration decisions (Kirchner et al. 2016; Corbett-Da-

vies et al. 2016; Bolukbasi et al. 2016), the speed at which 

these decisions are implemented is bottlenecked—for 

now—by the human organizations that act upon them. As 

some of these decisions are not time-critical, in principle, 

this could give operators some leeway to spot errors or test 

for (statistical) discrepancies in the system’s output. In such 

contexts, having a human-in-the-loop is not a (performance-

inhibiting) safety measure, but instead a basic feature of the 

assemblage, and can function as a relatively effective fail-

safe containing the error cascade. 

 In the second place, for many AI applications in society—

such as in healthcare, transport or critical infrastructure—all 

actors involved share an interest in safe and reliable opera-

tion, which could still serve to promote the sharing of les-

sons and best practices even against the gradient of inter-

actor rivalry.  

 However, neither of these caveats (uncoupling; unani-

mous interest in safety) applies in a competitive context, 

such as on physical or especially virtual battlefields. In a 

competitive context, a number of factors begin to exacerbate 

the operational risks of deployed AI systems. These factors 

include: (1) decisions must be made based on incomplete, 

‘messy’, non-structured and potentially unreliable data; (2) 

the speed of reaction or interaction is accelerated even fur-

ther; (3) there are risks of systems being hacked (Scharre 

2016a, 34)—either directly, or indirectly, through spoofing 

or behavioural exploitation. For instance, deep neural net-

works have proven vulnerable to confrontation with adver-

sarial examples (Nguyen, Yosinski, and Clune 2015), which 

can be generated without any privileged access to the algo-

rithm’s training data or logic; these spoofing attacks can 

moreover be hidden, so that they are invisible to humans. At 

their extreme, unexpected interactions between competing 

systems, especially in cyberspace, could cause unexpected 

escalation—a ‘flash war’ (Scharre 2016b), analogous to the 

algorithmic flash crashes observed in the financial sector. 

 Because of the advantage afforded by operational speed, 

many of the ‘normal accident’ problems may therefore be 

particularly acute in military AI applications (Borrie 2014; 

Scharre 2016a)—a frightening prospect, given that major 

powers, including the United States,(Center for Strategic 

and International Studies n.d.; Freedberg 2015) China 

(China’s State Council 2017; Kania 2017b, 2017a), and 

Russia (Putin 2017) increasingly perceive AI as a corner-

stone of their next-generation military and strategic suprem-

acy. In the context of competitive pressures, there may occur 

technology race dynamics which produce a strong pressure 

to cut down on safety and err on the side of rapid deploy-

ment of relatively untested systems (Armstrong, Bostrom, 

and Shulman 2013), even when principals are nominally 

committed to safe and responsible development.  

Implications for AI governance  

In sum, it appears plausible that many AI applications may 

be even more susceptible to normal accidents than past ‘text-

book’ case technologies such as nuclear power or aviation. 



Moreover, normal accident theory suggests—and past and 

present experience in the field of cybersecurity has repeat-

edly borne out (Yampolskiy and Spellchecker 2016)—that 

such risks cannot simply be ‘designed out’ of the technology 

(at least not without giving up on many of their benefits). 

These operational insights into the ‘normal’ failure modes 

of AI systems matter on two levels.  

 In the first place, on a systemic level, they provide an 

overall context for understanding if, how, or when to ‘trust’ 

AI systems—and conversely, when operator ‘trust’ in an AI 

begins to turn into an accident-enabling ‘automation bias’. 

In this way, it shows the point at which even the ideal of 

maintaining a human-in-the-loop does not offer the level of 

safety or reliability we may ascribe to it—indeed, how the 

illusion of reliability which it creates may in some ways 

make us less safe or robust once disaster does strike. 

 Secondly, on a governance level, the likely susceptibility 

of AI systems to normal accidents suggests that even if reg-

ulatory regimes can converge on concrete norms and stand-

ards to ensure that AI systems are deployed in a lawful and 

ethical manner, ‘unforeseeable’ yet inevitable accidents will 

emerge in their performance, putting both users and the pub-

lic at risk. This throws up interesting problems for frame-

works ranging from liability to disaster insurance, to name 

but a few.  

 There are, as of yet, no clear-cut answers to the question 

of how to ‘prevent’ normal accidents. The following is 

therefore largely speculative. Nonetheless, one upside of AI 

is that it is, in its applications and range of configurations, 

arguably more ‘flexible’ or customizable than, say, a nuclear 

power plant. As such, we may still try to derive relevant les-

sons for responsible AI regulation.  

 In the first place, legal and regulatory strategies should 

not solely trust in maintaining a human-in-the-loop, which 

(absent broader measures) at best simply sets up an operator 

to take the fall—to serve as ‘moral crumple zone’ (Elish 

2016)—once accidents happen, and at worst actually creates 

new avenues for those errors to be introduced. Instead, reg-

ulators (and innovators) might seek to explore ways to 

change how the system is used by users—to find, wherever 

possible, ways to reduce either the coupling, or the opacity 

of the AI; to limit the system’s autonomy (or speed) when 

deployed outside of intended environments. Promising legal 

approaches might also, for instance, seek to ensure and align 

the objectives of organizations towards safety (emphasizing 

the exchange of best practices and the sharing of incident 

reports); promote heterogeneity in deployed AI architec-

tures and networked systems (to insulate systems from flash 

crashes), or to spur research into ‘explainable’ AI and AI 

safety more broadly.  

 Many of such interventions might be underwritten by an 

appeal to the precautionary principle—an emerging princi-

ple within international law (Andorno 2004)—which holds 

a particular relevance to the uncertain-yet-likely risks from 

‘AI normal accidents’. 

Conclusion 

This argument has sought to explore responsible and robust 

governance approaches for the deployment of AI. Like all 

tightly coupled, opaque systems, AIs will be prone to ‘nor-

mal accidents’, ensuring that perfect safety may not be at-

tainable. Nonetheless, we may anticipate the particular 

‘field conditions’ under which AIs are more or less suscep-

tible to such errors, and try to account for these ‘risk factors’. 

On this basis, this paper has briefly suggested tentative prin-

ciples and practical recommendations for precautionary reg-

ulation. 

 Further research (as per usual) is needed. Such research 

might seek to map out in which sectors, or for which appli-

cations, AI systems are more or less likely to exhibit features 

priming them for normal accidents—and in which of these 

cases it is possible to mitigate these risk factors (by reducing 

opacity; by increasing ‘slack’) without incurring decay in 

overall performance. In addition, research could explore as-

semblages of organizational and technological innovation 

which might better promote graceful failures, or even func-

tion as hypothetical ‘super-fail-safe’ solutions (perhaps al-

lowing the failure of system or operator in isolation, but re-

liably preventing the simultaneous failure of both). Finally, 

research might examine whether new generations of AI sys-

tems might perhaps after all be able to serve as more reliable 

‘monitoring and fail-safe systems’, potentially by identify-

ing ‘signatures of failure’ in deployed AIs. The history of 

normal accidents suggests that the error always gets 

through. 
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