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Abstract
In previous work we provided a “norm conflict resolution”
algorithm allowing agents in stochastic domains (represented
by Markov Decision Processes) to “maximally satisfy” a set
of moral or social norms, where such norms are represented
by statements in linear temporal logic (LTL). This required
that the agent designer provide weights specifying the relative
importance of each norm. In this paper, we propose an “in-
verse norm conflict resolution” algorithm for learning these
weights from demonstration. This approach minimizes a cost
function based on the relative entropy between a policy en-
coding the observed behavior and a policy representing opti-
mal norm-following behavior. We demonstrate the effective-
ness of the algorithm in a simple GridWorld domain.

Introduction
As artificial agents are increasingly being considered and
employed in tasks requiring complex decision-making capa-
bilities and social interactions with humans, providing such
agents with the ability to learn, reason about, and obey hu-
man moral and social norms is increasingly being seen as a
priority.

One popular approach to imbuing artificial agents with
moral and social norms has been to represent these norms
as reward functions. This allows these norms to be eas-
ily obeyed (via reinforcement learning and planning al-
gorithms) and learned from behavior (via inverse rein-
forcement learning). Nevertheless, we have argued (Arnold,
Kasenberg, and Scheutz 2017) that reward-based represen-
tation is insufficient because (1) Markovian reward func-
tions cannot capture temporally complex moral and social
norms; (2) reward functions are difficult to interpret; and (3)
reward functions can be difficult to generalize to novel envi-
ronments.

An alternative approach is to represent norms explicitly
in some logical language. Representing norms in logic al-
lows greater temporal complexity, greater interpretability,
and greater generalizability to new worlds (provided that
those worlds share a basic set of propositions). We have
used linear temporal logic (LTL) to represent moral and
social norms, and have demonstrated how an agent might
learn such a norm from behavior (Kasenberg and Scheutz
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2017). This approach applies in the same stochastic domains
(namely, Markov Decision Processes) on which reward-
based approaches apply.

One of the difficulties learning human moral and social
norms is the fact that humans have complicated networks of
such norms, and one person may possess norms that con-
tradict each other, either in theory or in practice. Most pre-
vious approaches to value alignment deal with such “norm
conflicts” only implicitly – in the event of norm conflicts, in-
verse reinforcement learning agents will settle upon a reward
function that incentivizes what may in reality be a compro-
mise between conflicting principles. Similarly, our previous
approach to learning norms from behavior supposes that the
“demonstrator” is driven by one monolithic norm.

In recent work on norm conflict resolution (Kasenberg
and Scheutz 2018), in which we described an algorithm by
which an agent in a Markov Decision Process could bal-
ance the demands of several, possibly conflicting, LTL state-
ments representing moral and social norms. That algorithm
required the agent designer to provide along with each norm
a weight indicating the relative importance of that norm.

In this paper, we develop an algorithm for “inverse norm
conflict resolution” – determining the relative importance
of an agent’s norms by observing that agent’s behavior
in norm conflicts. Our algorithm minimizes a cost func-
tion based on the relative entropy (or Kullback-Leibler di-
vergence) between the observed behaviors and the optimal
norm-following behavior.

We begin by describing Markov Decision Processes, LTL,
and our norm conflict resolution algorithm; we then explain
the inverse norm conflict resolution algorithm. We demon-
strate this algorithm in a simple GridWorld domain, dis-
cuss the limitations of our approach and directions for future
work, and conclude with a summary of our results.

Related work
This paper draws heavily upon our previous work on norm
conflict resolution (Kasenberg and Scheutz 2018) (outlined
in the “Preliminaries” section). This work in turn is inspired
by previous approaches for planning with (single) tempo-
ral logic objectives in stochastic environments (Ding et al.
2011) and work on planning with partially satisfiable LTL
objectives (Lahijanian et al. 2015, for example).

The present approach is related to our previous work on



inferring temporal logic specifications from demonstrations.
In particular, in (Kasenberg and Scheutz 2017) we formu-
lated learning a temporal logic specification as a multi-
objective optimization problem, which we solved by ge-
netic programming. Subsequently (Vazquez-Chanlatte et al.
2017) formulated a similar problem, but used bounded spec-
ifications (where the truth values can be learned in finite
time), and used lattice search to find specifications. Al-
though both of these approaches learn temporally complex
specifications from demonstration, both also assume a single
monolithic objective.

Our work also bears some resemblance to inverse rein-
forcement learning (IRL). For example, (Ng and Russell
2000) first employ linear function approximation and learn
a set of weights parametrizing a reward function. Other ap-
proaches (Boularias, Kober, and Peters 2011, for example)
use relative entropy, which features in our approach.

Work on multi-objective IRL especially resembles our ap-
proach. For example, (Babes et al. 2011) uses expectation-
maximization to cluster observed trajectories and infers a
separate reward function for each cluster. (Saitake and Arai
2016) learn from demonstration the weights of several ob-
jectives in order to generate a single Pareto-optimal policy.

Preliminaries
Markov Decision Processes
We are interested in agent behavior in stochastic domains.
We will specify such domains as Markov Decision Processes
(MDPs).

We define an MDP M as a tuple 〈S,U,A, P, s0, γ,L〉,
where:

• S is a finite set of states;

• U is a finite set of actions;

• A : S → 2U determines what actions are available in
which states;

• P is the transition function, a probability distribution over
S given a previous state and action, so that P (s′|s, a) is
the probability of transitioning to state s′ given that the
agent was previously in s and executed action a;

• s0 ∈ S is an initial state;

• γ ∈ [0, 1) is a discount factor;

• L : S → 2Π is the labeling function, where Π is a set of
atomic propositions; this maps each state s to the subset
of Π that are true in s.

Note that the inclusion of L is nonstandard for MDPs, but
is important to the task of linking them to temporal logic
statements. Most MDP formulations also include a reward
function R, but this will not be necessary for this paper.

An agent in a Markov Decision process begins in the ini-
tial state s0. At each time step t, the agent chooses some
action at from their current state st, and the environment
transitions according to P (·|s, a) into the new state st+1.

A trajectory specifies the path of an agent through
an MDP. In particular, a finite trajectory consists of a
set of state-action pairs followed by a final state, e.g.

τ = s0, a0, s1, a1, · · · , sT , aT , sT+1. An infinite trajec-
tory is an infinite sequence of state-action pairs, e.g. τ =
s0, a0, s1, a1, · · · . Let TrajM be the set of finite trajectories
inM, and let ITrajM be the set of infinite trajectories.

We define a policy in an MDP as a mapping from finite
trajectories to probability distributions over actions; that is,
π : TrajM → ∆(A), where ∆ is the probability simplex.
That is, a policy specifies what the agent will do given its his-
tory, and the agent is allowed to choose randomly between
actions. A policy π is stationary if it depends only on the
agent’s current state; that is, π : S → ∆(A).

Linear temporal logic
The present work assumes that moral and social norms are
represented in Linear Temporal Logic (LTL) (Pnueli 1977).
LTL is a propositional logic that linearly encodes time. An
LTL formula over the set of atomic propositions Π is gener-
ated according to the following syntax:

φ ::=> | ⊥ | p,where p ∈ Π | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 |
φ1 → φ2 | Xφ | Gφ | Fφ | φ1 U φ2

In this case, Xφ means “φ will be true in the next time
step”; Gφ means “φ will be true at every present and future
time step”; Fφ means “φ will be true at some present or fu-
ture time step”; and φ1 U φ2 means “φ1 will be true until φ2

is true”.
The truth of each LTL statement is defined over an infi-

nite sequence of valuations σ0, σ1, σ2, · · · , where σi ⊆ Π.
This indicates a correspondence with Markov Decision Pro-
cesses: for each infinite trajectory τ = s0, a0, s1, a1, · · · of
an agent behaving in an MDP, we can see that this trajectory
induces an infinite sequence of valuations L(s0),L(s1), · · ·
over which any LTL formula φ can be evaluated.

Norm conflict resolution
We now briefly outline our norm conflict resolution ap-
proach in (Kasenberg and Scheutz 2018), which allows
agents in MDPs to “maximally satisfy” moral and social
norms represented in LTL.

We suppose that moral and social norms are represented
by LTL statements. Consider an agent in a Markov Deci-
sion ProcessM. The agent may possess several such norms
φ1, · · · , φN . The goal of a norm-obeying agent is to satisfy
these norms; ideally, the agent performs actions resulting in
a trajectory τ ∈ ITrajM such that τ � φ1, · · · , τ � φN .

Because of the stochasticity of the domain, the agent can-
not in general guarantee a trajectory τ such that τ � φi for
all i ∈ {1, · · · , N}. Thus the problem of obeying all norms
must be relaxed in some way. One obvious relaxation is to
maximize the probability of satisfying φ1, · · · , φN ; that is,
finding some (nonstationary) policy

π∗ = arg max
π

Prπ({τ : τ � φ1, · · · , τ � φN}) (1)

This approach, however, is not ideal when the probability
of the agent satisfying all its norms is zero. We refer to this
scenario as a norm conflict.



When norm conflicts occur, simply aiming to maximize
the probability of obeying all norms does not suffice to
choose a policy (since when the maximum probability is
zero, this is satisfied by every possible policy). Nevertheless,
it is generally desirable for the agent to behave reasonably
in the event of conflict. To do this, we relax the problem by
defining a notion of “badness” of behavior trajectories: we
define a notion of violation cost.

Our approach is to allow the agent to “ignore” some time
steps t with respect to each norm, but to pay a cost each time
this occurs.

More formally, consider some infinite trajectory τ =
s0, a0, s1, a0, · · · . For any set of integers N ⊂ Z≥0, we can
remove the set of time steps indexed by elements of N from
the trajectory; we let τ\N be the resulting trajectory. For ex-
ample, if N = {0, 2}, then τ\N is the trajectory obtained
by removing time steps 0 and 2 from τ :

τ\{0, 2} = s1, a1, s3, a3, s4, a4, · · ·

We define the violation cost of some trajectory τ with re-
spect to a norm φ to be the (discounted) minimum number
of time steps that must be omitted in this way in order for τ
to satisfy φ:

Violφ(τ) = min
N⊆Z≥0

τ\N�φ

∞∑
t=0

γt1t∈N (2)

Note that if τ � φ, then Violφ(τ) = 0 (so that obeying
a norm incurs no violation cost). The use of the discount
factor ensures that the violation cost of any trajectory τ is
finite. This is necessary to allow comparison of trajectories
that each violate a norm infinitely many times.

The critical assumption of this notion of violation cost is
that the “badness” of behaviors that violate a norm depend
primarily on the duration (in time steps) of the violation. For
real moral norms this is likely not the case; we believe our
approach to be sufficiently general to accommodate other
notions of violation cost.

We define a norm system as a pair (Φ,w) where Φ
is a tuple of LTL norms Φ = (φ1, · · · , φN ) and w =
(w1, · · · , wN )T is a corresponding weight vector. Each wi
is a positive real number representing the importance of the
norm φi. It is these weights over which our inverse norm
conflict resolution algorithm will be optimizing.

The violation cost of a trajectory τ with respect to a norm
system N is simply the weighted sum of the violation costs
of τ with respect to the constituent norms φ1, · · · , φN :

Viol(Φ,w)(τ) =

N∑
i=1

wiViolφi
(τ) (3)

Our aim in (Kasenberg and Scheutz 2018) is to find
the (general) policy that minimizes the expected violation
cost (over all trajectories). While this policy is not station-
ary in the underlying MDP, it is stationary in the prod-
uct MDP M⊗ between M and the DRAs of each norm
D(φ1), · · · ,D(φN ).

In order to maximally satisfy a norm system N, the agent
must perform some graph theoretic operations involving end
components. This is discussed (along with some complica-
tions) in (Kasenberg and Scheutz 2018). Thois divides S⊗
into Sbad, the set of product states such that if s ∈ Sbad, no
amount of suspending norms will allow the DRA states to
become accepting. We let Sgood = S⊗\Sbad.

Due to the stationarity of the optimal policy inM⊗, the
optimal expected violation cost beginning from an individ-
ual product state (s, q1, · · · , qN ) and immediately perform-
ing action a satisfies the following Bellman-like equation:

Viol(Φ,w)((s, q1, · · · , qN ), a) =

∑
s′∈S

P (s′|s, a) minã∈{0,1}n
N∑
i=1

(
wiãi

+ γmina∈A Viol(Φ,w)((s
′, q′1, · · · , q′n), a)

)
if s ∈ Sgood

1
1−γ

N∑
i=1

wi otherwise

where

q′i =

{
qi if ãi = 1

δi(qi,L(s′)) otherwise

This equation may require some interpretation. ãi represents
whether the norm φi will be “suspended” (the current time
step omitted) after seeing the new state s′. If the agent does
decide to suspend φi (ãi = 1), the DRA D(φi) stays in its
state qi; if the agent chooses not to do so (ãi = 0) then
D(φi) transitions normally. The agent minimizes not only
over which action it performs, but also over its choice of
which norms to suspend at any given time step.

This is a Bellman-like equation, and so we can compute
the optimal expected value from any product state using
value iteration, with the following update equation:

Viol
(k+1)
(Φ,w)((s, q1, · · · , qN ), a)←∑

s′∈S
P (s′|s, a) min

ã∈{0,1}n

N∑
i=1

(
wiãi

+ γViol
(k)
(Φ,w)((s

′, q′1, · · · , q′n))
)

(4)

States in S⊗bad have their violation cost initialized to the

maximal violation cost 1
1−γ

N∑
i=1

wi and not updated during

value iteration.
Once the optimal expected violation cost from each prod-

uct state is computed by running (4) to convergence, the op-
timal set of actions from each product state s⊗ can be com-
puted by argmina∈A Viol(Φ,w)(s

⊗). This yields an optimal
product-space policy π?(Φ,w) that uniformly selects one of
the optimal actions from the observed product state.

Finally, at each time step t the agent must use its history to
determine its current product state s⊗t . This can be thought
of as a sort of filtering, and can be done in time constant in



the number of time steps. At each t, the agent computes s⊗t
and selects an action a with probability π?(Φ,w)(s

⊗
t , a).

Expected violation cost can also be computed for an in-
dividual policy, by replacing the mina∈A(·) in (4) with an
expectation over the policy (

∑
a∈A

π(s, a) × (·)). We will de-

note by Violπφ the expected violation cost of the policy π
with respect to the norm φ.

It will be helpful to define the state-action violation cost
vector as the vector whose entries are the violation cost of
the optimal policy π?(Φ,w) with respect to each individual
norm in φ:

Viol(Φ,w)(s
⊗, a) =


Viol

π?
(Φ,w)

φ1
(s⊗, a)

...

Viol
π?

(Φ,w)

φN
(s⊗, a)


Note that Viol(Φ,w)(s

⊗, a) = wTViol(Φ,w)(s
⊗, a).

We can use value iteration to compute Viol(Φ,w) directly
(rather than computing the scalar violation cost Viol(Φ,w)).
The computation is straightforward, but the mathematical
description is not; we omit the details of the computation.

Inverse norm conflict resolution
The problem of interest in this paper is: given some tuple
Φ = (φ1, · · · , φN ) of norms represented in LTL and some
set of (finite) behavior trajectories τ (1), · · · , τ (m), compute
some vector of weights w = (w1, · · · , wN )T that “best ex-
plain” the observed behavior.

We shall constrain the weights to sum to one (since mul-
tiplying all weights by a constant will not change the behav-
ior). We will also require all weights to be non-negative.

We now clarify the notion of “best explain”. The weights
w1, · · · , wN inferred should be such that the observed be-
havior should be as similar as possible to the behavior of the
agent optimally satisfying the norm system (Φ,w)

The similarity between the observed behavior and optimal
norm-folllowing behavior may be defined in terms of the rel-
ative entropy, or Kullback-Leibler divergence (Kullback and
Leibler 1951), between the observed product-space policy
πo and the optimal product-space policy given the weights
π?Nw

(where Nw := ((w1, φ1), · · · , (wN , φN ))). The rela-
tive entropy between two probability distributions P and Q
is defined by

D(P || Q) =
∑
x

P (x) log
P (x)

Q(x)
(5)

The relative entropy D(P || Q) can be thought of as a
measure of the “distance” between P and Q (although D
does not qualify as a distance function, since in general
D(P || Q) 6= D(Q || P )).

Recall that a policy defines a probability distribution over
actions for each state. Thus, at each state s, we can com-
pute the relative entropy D(π1(s, ·) || π2(s, ·)) between two
stationary policies π1 and π2.

The two quantities will be the observed product-space
policy πo, and a Boltzmann policy defined based on the vio-
lation cost.

The observed product-space policy πo is computed from
the trajectories. In particular, each trajectory is lifted into a
product-space trajectory by mapping each state st to a prod-
uct state (st, q1, · · · , qN ) considering the agent’s history.
Details about this process can be found in (Kasenberg and
Scheutz 2017). After lifting trajectories to the product space,
construct the “permissible action map” A∗ : S⊗ → 2A as
follows:

• If a given product state s⊗ occurs in any product-space
trajectory, A∗(s⊗) is the set of all actions the demonstra-
tor performed at least once in s⊗.

• If a given product state s⊗ never occurs in any observed
trajectory, A∗(s⊗) = A.

Since the demonstrator is assumed to be acting optimally
with respect to its norms, the apprentice assumes that if the
demonstrator performed a in product state s⊗, then a is per-
missible from s⊗; A∗ maps each product state to the set of
actions assumed to be permissible in that product state.

The observed product-space policy is then the uniform
policy over the set of all permissible actions:

πo(s⊗, a) =

{
1

|A∗(s⊗)| if a ∈ A∗(s⊗)

0 otherwise
(6)

The Boltzmann policy is a policy that strongly favors ac-
tions with higher long-term reward. In this case, the policy
favors actions with lower expected violation cost. In this way
it approximates the optimal policy given (Φ,w):

πB(Φ,w)(s
⊗, a) =

exp{−βViol(Φ,w)(s
⊗, a)}∑

a′∈A
exp{−βViol(Φ,w)(s⊗, a′)}

=
exp{−βwTViol(Φ,w)(s

⊗, a)}∑
a′∈A

exp{−βwTViol(Φ,w)(s⊗, a)}
(7)

We use the Boltzmann policy instead of the optimal pol-
icy because (1) it is differentiable in the violation cost,
whereas the optimal policy is usually not, and (2) it gives
nonzero probability to all actions, and relative entropy is un-
defined when its second argument is zero. As β → ∞, the
Boltzmann policy approximates the optimal policy arbitrar-
ily well.

Since this is defined over individual states and we need
a measure over the entire product MDP M⊗, we propose
treating the relative entropy as a cost function defined over
each state:

Cw(s⊗) = D(πo(s⊗, ·) || πB(Φ,w)(s
⊗, ·)) (8)

We shall then define the objective function in terms of

Obj(w) = Eπo

[ ∞∑
t=0

γtCw(s⊗t )

]
(9)



Algorithm 1 Inverse norm conflict resolution
1: function INVERSENCR
2: InstantiateM⊗ and follow steps in (Kasenberg and

Scheutz 2018) to compute S⊗bad
3: Compute the observed product-space policy πo
4: repeat
5: for s⊗ ∈ S⊗\S⊗bad do
6: for a ∈ A do
7: Compute Viol

(k+1)
(Φ,w)(s

⊗, a) using previ-

ous estimates Viol
(k)
(Φ,w)(·, ·)

8: end for
9: V (k+1)(s⊗) ← Cw(s⊗) +
γ
∑
a∈A

πo(s⊗, a)
∑

s⊗′∈S⊗
P⊗(s⊗′|s⊗, a)V (k)(s⊗′)

10: ∆(k+1)(s⊗) ← ∇̃wCw(s⊗) +
γ
∑
a∈A

πo(s⊗, a)
∑

s⊗′∈S⊗
P⊗(s⊗′|s⊗, a)∆(k)(s⊗′)

11: end for
12: ŵ← w(k) − η∆(k+1)(s⊗0 )

13: w(k+1) ← Project ŵ onto{
w :

N∑
i=1

wi = 1, wi ≥ 0

}
14: k ← k + 1
15: until w, V , ∆, Viol(Φ,w) all converge
16: return w(k)

17: end function

Note that Obj(w) = Vw(s⊗0 ) where s⊗0 is the initial state
ofM⊗, and Vw is a function satisfying the following Bell-
man equation:

Vw(s⊗) = Cw(s⊗)+

γ
∑
a∈A

(
πo(s⊗, a)

∑
s⊗′∈S⊗

P⊗(s⊗′|s⊗, a)Vw(s⊗′)

)
(10)

Equation (10) can be used as an update equation, and so for
any vector of weights w, this objective can be computed via
value iteration.

In order to optimize weights, we note that the gradient of
(10) can be taken with respect to w:

∇wVw(s⊗) = ∇wCw(s⊗)+

γ
∑
a∈A

πo(s⊗, a)
∑

s⊗′∈S⊗
P⊗(s⊗′|s⊗, a)∇wVw(s⊗′) (11)

We approximate the value of∇wCw(s⊗) by

∇̃wCw(s⊗) = β
∑
a∈A

πo(s⊗, a)

(
Viol(Φ,w)(s

⊗, a)−

∑
a′∈A

Viol(Φ,w)(s
⊗, a′)πB(Φ,w)(s

⊗, a′)

)
(12)

Equation (12) does not exactly compute ∇wCw(s⊗), since
it ignores the dependence on Viol(Φ,w) on w and thus the

terms ∇wViol(Φ,w). we find in practice that the approxi-
mate form works well.

Equations (8) and (12) apply to product states which oc-
cur in the observed trajectories. Rather than speculate about
the behavior of the agent in unobserved product states, we
assume that the KL divergence between the observed policy
and the Boltzmann policy in these states is zero; we thus set
both Cw(s⊗) and ∇̃wCw(s⊗) in all such states.

Equation (11) is a fixed-point equation, and thus we can
use a fixed-point iteration to compute the gradient∇wVw(s)
as well. We can thus use projected gradient descent to opti-
mize over the weights (where the projection is done to en-
force the constraints over w).

Rather than running (4) and (11) to convergence every
time the weights are updated, we can make the computation
more efficient by performing only one iteration of updates
according to (4) and (11) between gradient descent steps.
The result is Algorithm 1.

Example: GridWorld
We tested our approach in a simple 3 × 3 GridWorld to
demonstrate its effectiveness. In particular, the agent begins
in the bottom-left cell. The agent has two goals: to spend
as much time as possible in the top-left “good cell”, and to
avoid the bottom-left “bad cell” as much as possible. The
agent had actions north, south, east, and west, which in
this case succeed 80% of the time (and otherwise move the
agent in one of the other three directions). Any movement
that would cause the agent to leave the grid instead results in
the agent “hitting a wall” and remaining in its current cell.

We represented the two goals using a proposition
goodCell to indicate when the agent was in the good cell,
and badCell when the agent was in the bad cell, and
providing the agent with the two norms G goodCell and
G ¬badCell with weights w1 and w2 respectively. Demon-
strations were obtained using our algorithm in (Kasenberg
and Scheutz 2018).

The resulting pattern of behavior depends on the rel-
ative weights of the two norms. If w2 is low (less than
roughly 1.82w1 - Regime 1) the agent travels directly to-
ward the good cell, passing through the bad cell on the
way. If 1.82w1 < w2 < 9.5w1 (Regime 2), the agent at-
tempts to take the path leading through the center cell. If
9.5w1 < w2 < 14w1 (Regime 3), the agent takes the path
along the right-hand-side. If w2 > 14w1 or w1 = 0 (Regime
4), the agent ignores the good cell completely and focuses
on avoiding the bad cell.

We picked one set of weights from each of the regimes
R1-R4. Each demonstration consisted of ten episodes of ten
time steps each. We then ran Algorithm 1 on the resulting
trajectories. The set Φ of norms included the actual norms
G goodCell and G ¬badCell as well as the “distraction”
norms G ¬goodCell (with weight w3) and G badCell (with
weight w4). In each case we chose η = 10−5, β = 150, and
ran until (a) the change in all values was less than 10−6, or
(b) for 10000 iterations.

The results are shown in Table 1. In cases R1 to R3 the
weights of the “distraction” norms are very close to zero.



Table 1: Results of inverse norm conflict resolution in GridWorld
Regime Actual weights Policy Recovered weights Recovered policy

R1 (0.5, 0.5)

↑ ← ←
↑ ↑ ↑
↑ ↑ ↑ (0.668, 0.332, 0, 0)

↑ ← ←
↑ ↑ ↑
↑ ↑ ↑

R2 (0.25, 0.75)

↑ ← ←
↑ ↑ ↑
→ ↑ ↑ (0.324, 0.673, 0.002,0)

↑ ← ←
↑ ↑ ↑
→ ↑ ↑

R3 (0.08, 0.92)

↑ ← ←
↑ ↑ ↑
→ → ↑ (0.082, 0.898, 0, 0.019)

↑ ← ←
↑ ↑ ↑
→ → ↑

R4 (0.06, 0.94)

→ → ↑
↑ → ↑
→ → ↓ (0, 0.934, 0.066, 0)

→ → →
→ → ↓
→ → →

Furthermore, in each such case the weights of w1 and w2

are in the right regimes, and the recovered weights cause
the agent to follow the demonstrator’s policy precisely (even
though, for example, in R1 the agent never saw the demon-
strator’s actions in the bottom-right cell).

Although the correct regime is recovered in case R4, the
weight computed for G ¬goodState is nonzero, and the
agent’s policy is not correct in all states. We believe that
this may be caused by our choice of β. As we described in
the previous section, the extent to which πB(Φ,w) matches the
optimal policy π∗ depends on the value of β. In practice we
find that increasing β (and correspondingly decreasing η)
yields better results (at the cost of slower convergence).

Note that while the algorithm determines the correct
regime, the exact given weights are not recovered. This is
expected, since the weights are only accessible to the agent
via the demonstrations. The more varied the demonstrations,
the more accurately the weights can be recovered.

Discussion and future work
Inverse norm conflict resolution allows an agent to esti-
mate from demonstrations the relative importance of vari-
ous moral and social norms (represented in temporal logic).
These weights can help the agent to behave appropriately
in novel norm conflicts. While this approach requires a fi-
nite set of possible norms to be provided, we have shown in
(Kasenberg and Scheutz 2017) how a (single) temporal logic
statement may itself be learned from behavior. The combi-
nation of these two approaches hints at a mechanism for co-
learning multiple norms and their corresponding weights.

One crucial priority is improving the computational com-
plexity of this approach. Our algorithm runs in time ex-
ponential in the total number of norms (as does the norm
conflict resolution algorithm underlying it). This complexity
renders the actual implementation of our approach on real
systems impractical. We thus emphasize the importance of

research into tractable norm conflict resolution algorithms.
While our approach has only been concretely imple-

mented in linear temporal logic (LTL), we believe that simi-
lar approaches may be applicable to other formal languages,
and other notions of violation cost. Precisely which logics
are amenable to this sort of approach (as well as which no-
tions of violation cost) is a topic for future work. One prior-
ity would be to incorporate explicit deontic operators, so as
to facilitate more sophisticated reasoning.

The task of learning the importance of norms by observ-
ing norm conflicts raises the intriguing possibility of using
active learning for such purposes. Agents using such algo-
rithms may be able to pose new moral dilemmas to another
agents or human, and use the resulting information to better
understand that agent’s values. Using norms explicitly rep-
resented in a logical language facilitates this, potentially al-
lowing agents to generate new possible worlds with bizarre
dynamics and properties, but which may help to elucidate
the underlying norms.

Conclusion
In this paper, we provided an algorithm (inverse norm con-
flict resolution) for determining the relative importance of
a set of moral and social norms to a demonstrator by ob-
serving the demonstrator’s behavior in norm conflicts. This
algorithm contributes towards the goal of artificial agents
that can learn and obey human moral and social norms, even
when those norms conflict.
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