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Abstract

AI and machine learning tools are being used with increas-
ing frequency for decision making in domains that affect peo-
ples’ lives such as employment, education, policing and loan
approval. These uses raise concerns about biases of algo-
rithmic discrimination and have motivated the development
of fairness-aware machine learning. However, existing fair-
ness approaches are based solely on attributes of individu-
als. In many cases, discrimination is much more complex,
and taking into account the social, organizational, and other
connections between individuals is important. We introduce
new notions of fairness that are able to capture the relational
structure in a domain. We use first-order logic to provide a
flexible and expressive language for specifying complex rela-
tional patterns of discrimination. Furthermore, we extend an
existing statistical relational learning framework, probabilis-
tic soft logic (PSL), to incorporate our definition of relational
fairness. We refer to this fairness-aware framework FairPSL.
FairPSL makes use of the logical definitions of fairnesss but
also supports a probabilistic interpretation. In particular, we
show how to perform maximum a posteriori(MAP) inference
by exploiting probabilistic dependencies within the domain
while avoiding violation of fairness guarantees. Preliminary
empirical evaluation shows that we are able to make both ac-
curate and fair decisions.

1 Introduction
Over the past few years, AI and machine learning have be-
come essential components in operations that drive the mod-
ern society, e.g., in financial, administrative, and educational
spheres. Discrimination happens when qualities of individu-
als which are not relevant to the decision making process in-
fluence the decision. Delegating decision making to an auto-
mated process raises questions about discriminating against
individuals with certain traits based on biases in the data.
This is especially important when the decisions have a po-
tential to impact the lives of individuals, for example, the
decisions on granting loans, assigning credit, and employ-
ment.

Fairness is defined as the absence of discrimination in a
decision making process. The goal of fairness-aware ma-
chine learning is to ensure that the decisions made by an al-
gorithm do not discriminate against a population of individ-
uals (Feldman et al. 2015; Boyd, Levy, and Marwick 2014;
Hardt et al. 2016). Fairness has been well studied in the
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social sciences and legal scholarship (for an in-depth re-
view see (Barocas and Selbst 2016)), and there is emerg-
ing work on fairness-aware ML within the AI and com-
puter science communities. For example, fairness through
awareness/Lipschitz property (Dwork et al. 2012), indi-
vidual fairness (Zemel et al. 2013), statistical parity/group
fairness (Kamishima, Akaho, and Sakuma 2011), coun-
terfactual fairness (Kusner et al. 2017), demographic par-
ity/disparate impact (Feldman et al. 2015; Chouldechova
2017), preference-based fairness (Zafar et al. 2017), and
equality of opportunity (Hardt et al. 2016).

The existing work in fairness-aware machine learning is
based on a definition of discrimination where a decision
is influenced by an attribute of an individual. An attribute
value upon which discrimination is based (such as gender,
race, or religion) is called a sensitive attribute. The sen-
sitve attribute defines a population of vulnerable individuals
known as the protected group. A fair decision-making pro-
cess treats the protected group the same as the unprotected
group.

However, in many social contexts, discrimination is the
result of complex interactions and can not be described
solely in terms of attributes of an individual. For example,
consider an imaginary scenario in an organization in which
younger female workers who have older male supervisors
have lower chances of promotion than their male counter-
parts.∗ This discrimination pattern involves two attributes
of the individual (gender and age), a relationship with an-
other individual (supervisor), and two attributes of the sec-
ond individual. Addressing such complex cases poses two
challenges. First, the concepts of discrimination and fairness
need to be extended to capture not only attributes of indi-
viduals but also the relationships between them. Second, a
process is required that ensures that fair decisions are made
about individuals who are affected by such patterns. In this
paper we address both of these two challenges. We use first-
order logic (FOL) to extend the notion of fairness to the re-
lational setting. FOL is an expressive representation for rela-
tional problems which also widely used for learning in rela-
tional domains. Moreover, we extend an existing framework
for statistical relational learning (Getoor and Taskar 2007)
called probabilistic soft logic (PSL)† (Bach et al. 2017). PSL

∗Of course, many other patterns may be possible: female bosses
may promote female subordinates and discriminate against male
workers, or male bosses may promote female employees. Our goal
is to provide a general framework which is able to describe arbi-
trarily complex discrimination patterns.
†http://psl.linqs.org/



combines logic and probability for learning and reasoning
over uncertain relational domains. One of the most common
reasoning task in PSL is called maximum a posteriori (MAP)
inference, which is performed by finding the most probable
truth values for unknowns over a set of given evidence. We
develop a new MAP inference algorithm which is able to
maximize the a posteriori values of unknown variables sub-
ject to fairness gaurantees.

Our contributions are as follows: 1) We propose fairness-
aware machine learning for the relational setting; 2) We ex-
tend PSL into a fairness-aware framework called FairPSL
which can represent the logical definition of fairness; 3) we
develop a new MAP inference algorithm which is able to
maximize the posteriori values of unknown variables sub-
ject to fairness guarantees; 4) We empirically evaluate our
proposed framework on synthetic data.

2 Motivation
The existing work on designing fair algorithms in ma-
chine learning exclusively focus on attribute-based fairness,
which is based on the following assumptions: First, there is
an assumption that the individuals (sometimes referred to as
units or entities) are independent and described by simple
attribute vectors. Second, the group for which one wishes to
ensure fairness known as as the protected group is defined
on the basis of some attribute values. Finally, there is a de-
cision that is associated with each individual, and the goal is
to ensure that members of the protected group are subject to
a fair decision. We illustrate the attribute-based fairness by
the following example.
Example 1 (Loan Processing). A bank bases its decisions
about granting a loan on attributes of the applicant. The
goal is to decide about granting the loan for each appli-
cant using a predictive model. The administration needs to
ensure that the gender of applicants has no influence on the
decision. i.e., the female applicants receive the loan at a rate
close to the male applicants. In this scenario, the protected
group is female applicants.

Contrary to the assumptions of the attribute-based set-
ting, the data can be relational, and the protected group itself
might be represented by a relational definition. The current
fairness-aware machine learning techniques are not capable
to model relations and hence cannot be used to make the
decision making model fair. We illustrate this setting by a
scenario, inspired by the motivating example of (Choi, Dar-
wiche, and den Broeck 2017).
Example 2 (Paper Reviewing). Consider the reviewing pro-
cess in a conference, where each submitted paper is re-
viewed by two reviewers. The area chair summarizes the
reviews. In general, the reviewers are likely to write posi-
tive reviews about high-quality papers. Moreover, when a
reviewer writes a positive review for a paper, it is less likely
for her to evaluate other papers positively.

The program chair has only time to read the review sum-
maries from the area chair. She is faced with the problem
of estimating the true quality of the papers from these sum-
maries to decide whether paper should be accepted for pre-
sentation at the conference or not. The organizers know that
the affiliation of student authors does not correlate with
the quality of their papers. However, they notice that the
students from undistinguished institutes have been under-
represented (perhaps the style of their papers diverts the
attention of reviewers from the technical quality). The or-
ganizers wish to accept high-quality papers, while ensuring

that the discrimination against this group of researchers is
eliminated. In this scenario, the protected group is student
authors from undistinguished institutes.

Example 2 describes a prediction problem over a database
that consists of relations between papers, authors, and re-
viewers. Such prediction tasks are best handled by tech-
niques from the relational learning domain. To ensure fair
prediction in such settings, we have to extend the notion of
attribute-based fairness to relational fairness that we will
address in the next section. Throughout this paper, we use
the paper reviewing problem as a running example for rela-
tional fairness.

3 Fairness Formalism
A representation that can describe different types of entities
and different relationships between them is called relational.
In this section, we use first-order logic to define relational
fairness. We employ first-order logic as an expressive repre-
sentation formalism which can represent objects and com-
plex relationships between them. We start by defining atom:
Definition 1 (Atom). An atom is an expression of the form
P (a1, a2, . . . , an) where each argument a1, a2, . . . , an is ei-
ther a constant or a variable. The finite set of all possi-
ble substitutions of a variable to a constant for a partic-
ular variable a is called its domain Da. If all variables
in P (a1, a2, . . . , an) are substituted by some constant from
their respective domain, then we call the resulting atom a
ground atom.
Example 3. In our loan processing problem (Example 1),
we can represent applicants’ attributes by atoms. For in-
stance, atom Female(v) indicates whether or not appli-
cant v is female. Similarly, we can represent relations with
atoms. In the paper reviewing problem in Example 2 the
atom Review(r, p) indicates whether or not reviewer r re-
views paper p.

The relational setting provides the flexibility to express
complex definitions with formulae.
Definition 2 (Formula). A formula is defined by induction:
every atom is a formula. If α and β are formulae, then α∨β,
α∧β, ¬α are formulae. If x is a variable and α is a formula,
then the quantified expressions of the form ∃x α and ∀x α
are formulae.

To characterize groups of individuals based on a formula,
we define the notion of population.
Definition 3 (Population). We denote formula F which has
only one free variable v (i.e. other variables in F are quan-
tified) by F [v]. The population defined by F [v] is the set of
substitutions of v for which F [v] holds.

Example 4. Consider the formula F [v] :=
∀u, ¬Affiliated(v, u) ∨ ¬TopRank(u). The population
specified by this formula is the set individuals who are not
affiliated with a top-rank institute.

The truth value of a formula is derived from the truth
value of atoms that it comprises, according to the rules of
logic. Each possible assignment of truth values to ground
atoms is called an interpretation.
Definition 4 (Interpretation). An interpretation I is a map-
ping that associates a truth value I(P ) to each ground atom
P . For Boolean truth values, I associates true to 1 and false
to 0 truth values. For soft logic (see Definition 10) I maps
each ground atom P to a truth value in interval [0, 1].



In attribute-based fairness, it is assumed that there is a cer-
tain attribute of individuals, i.e. the sensitive attribute, that
we do not want to affect a decision. Gender, race, religion
and marital status are examples of sensitive attributes. Dis-
crimination has been defined in social science studies as a
treatment in favor or against a group of individuals given
their sensitive attribute. This group of individuals is the pro-
tected group.

In a relational setting, both the sensitive attributes of an
individual and their participation in various relations may
have an undesired effect on the final decision. We charac-
terize the protected group in a relational setting by means
of a population. In practice, we are often interested in main-
taining fairness for a specific population such as applicants,
students, employees, etc. This population is then partitioned
into the protected and unprotected groups. We define dis-
criminative pattern which is a pair of formulae to capture
these groups: 1) F1[v]: to specify the difference between the
protected and unprotected groups and 2) F2[v]: to specify
the population over which we want to maintain fairness.
Definition 5 (Discriminative pattern). A discriminative pat-
tern is a pair DP[v] := (F1[v], F2[v]) , where F1[v] and
F2[v] are formulae.
Example 5. The two formulae in the discrimina-
tion pattern DP[v] :=

(
(∀u, ¬Affiliated(v, u) ∨

¬TopRank(u)), Student(v)
)

specify two populations,
namely the student authors and the individuals who are not
affiliated with top-rank institutes.

Given the definition of the discriminative pattern, we have
a rich language to define the scope of the protected and un-
protected group in a relational setting.
Definition 6 (Protected group). Given an interpretation I ,
the protected group is a population of the form:

PG := {v : F1[v] ∧ F2[v]}
which is defined as the set of all instances hold for variable
v for which F1[v]∧F2[v] is true under interpretation I , that
is, I(F1[v]∧F2[v]) = 1. Similarly, the unprotected group is
a population of the form:

UG := {v : ¬F1[v] ∧ F2[v]}
which is defined as the set of all instances hold for variable
v for which I(¬F1[v] ∧ F2[v]) = 1.
Example 6. The protected group of the discrimina-
tion pattern specified in Example 5 is PG :=

{
v :(

∀u, ¬Affiliated(v, u) ∨ ¬TopRank(u)
)
∧ Student(v)

}
and

the unprotected group is UG :=
{
v :

(
∃u, Affiliated(v, u)∧

TopRank(u)
)
∧Student(v)

}
. This means our protected group

is students who are not affiliated with top-rank institutes and
our unprotected group is students affiliated with top-rank in-
stitutes.

Discrimination is defined in terms of a treatment or de-
cision that distinguishes between the protected and unpro-
tected groups. Here we define decision atom.
Definition 7 (Decision atom). A decision atom d(v) is an
atom containing exactly one variable v that specifies a deci-
sion affecting the protected group which is defined either by
law or end-user.
Example 7. The decision atom Presents(v) indicates
whether or not v presents their paper.

Note that the fairness formulation in this section is de-
signed for the relational setting, however relational fairness
subsumes the attribute-based fairness such that: a sensitive
attribute is defined by an atom with one argument and F2[v]
in discrimination pattern is >. For example, discrimination
pattern of our loan processing problem in Example 1 is of
the form DP := (Female(v),>) that denotes female appli-
cants as the protected group (i.e., PG := {v : Female(v)})
and male applicants as the unprotected group (i.e., UG :=
{v : ¬Female(v)}).

4 Fairness Measures
In this section, we formulate common fairness measures us-
ing the notations defined in Section 3. Let a and c denote
the counts of denial (i.e., negative decisions) for protected
and unprotected groups, and n1 and n2 denote their sizes,
respectively. Given the decision atom d(v), discriminative
pattern DP(F1[v], F2[v]), and interpretation I , these counts
are computed by the following equations:

a ≡
∑
v∈Dv

I
(
¬d(v) ∧ F1[v] ∧ F2[v]) (1)

c ≡
∑
v∈Dv

I
(
¬d(v) ∧ ¬F1[v] ∧ F2[v]) (2)

n1 ≡
∑
v∈Dv

I
(
F1[v] ∧ F2[v]) (3)

n2 ≡
∑
v∈Dv

I
(
¬F1[v] ∧ F2[v]) (4)

The proportions of denying for protected and unprotected
groups are p1 = a

n1
and p2 = c

n2
, respectively. Exist-

ing data-driven fairness measures (Pedreschi, Ruggieri, and
Turini 2012) can be defined in terms of p1 and p2 based on
our relational notions as follows:

1. Risk difference: RD = p1 − p2, also known as absolute
risk reduction. The UK uses RD as its legal definition of
fairness measure (UKl ).

2. Risk Ratio: RR = p1

p2
, also known as relative risk. The

EU court of justice typically use the RR as a measure of
fairness (EUl ).

3. Relative Chance: RC = 1−p1

1−p2
also, known as selection

rate. The US laws and courts mainly use the RC as a mea-
sure of fairness (USl ).
Notice that RR is the ratio of the proportion of benefit

denial between the protected and unprotected groups, while
RC is the ratio of the proportion of benefit granted. Finally,
we introduce the notion of δ-fairness.
Definition 8 (δ-fairness). If a fairness measure for a deci-
sion making process falls within some δ-window, then the
process is δ-fair. Given 0 ≤ δ ≤ 1, the δ-windows for mea-
sures RD/RR/RC are defined as:

−δ ≤RD ≤ δ
1− δ ≤RR ≤ 1 + δ

1− δ ≤RC ≤ 1 + δ

To overcome the limitations of attribute-based fairness,
we introduce a new statistical relational learning (SRL)



framework (Getoor and Taskar 2007) suitable for modelling
fairness in relational domain. In the next Section, we re-
view probabilistic soft logic (PSL). We then extend PSL
with the definition of relational fairness introduced above in
Section 6. Our fairness-aware framework which we refer to
as “FairPSL” is the first SRL framework that performs fair
inference.

5 Background: Probabilistic Soft Logic
In this section, we review the syntax and semantics of
PSL, and in the next section we extend MAP inference in
PSL with fairness constraints to define MAP inference in
FairPSL.

PSL is a probabilistic programming language for defin-
ing hinge-loss Markov random fields (Bach et al. 2017). Un-
like other SRL frameworks whose atoms are Boolean, atoms
in PSL can take continuous values in the interval [0, 1].
PSL is as an expressive modeling language that can incor-
porate domain knowledge with first-order logical rules and
has been used successfully in various domains, including
bioinformatics (Sridhar, Fakhraei, and Getoor 2016), recom-
mender systems (Kouki et al. 2015), natural language pro-
cessing (Ebrahimi, Dou, and Lowd 2016), information re-
trieval (Alshukaili, Fernandes, and Paton 2016), and social
network analysis (West et al. 2014), among many others.

A PSL model is defined by a set of first-order logical rules
called PSL rules.
Definition 9 (PSL rule). a PSL rule r is an expression of the
form:

λr : T1 ∧ T2 ∧ . . . ∧ Tw → H1 ∨H2 ∨ . . . ∨Hl (5)

where T1, T2, . . . , Tw, H1, H2, . . . , Hl are atoms or negated
atoms and λr ∈ R+ ∪∞ is the weight of the rule r. We call
T1∧T2∧ . . .∧Tw the body of r (rbody), and H1∨H2∨ . . .∨Hl

the head of r (rhead).
Since atoms in PSL take on continuous values in the unit

interval [0, 1], next we define soft logic to calculate the value
of the PSL rules under an interpretation I .
Definition 10 (Soft logic). The (∧̃) and (∨̃) and negation
(¬̃) are defined as follows. For m,n ∈ [0, 1] we have: m∧̃n =
max(m+ n− 1, 0), m∨̃n = min(m+ n, 1) and ¬̃m = 1−m.
The ˜ indicates the relaxation over Boolean values.

The probability of truth value assignments in PSL is de-
termined by the rules’ distance to satisfaction.
Definition 11 (The distance to satisfaction). The distance to
satisfaction dr(I) of a rule r under an interpretation I is
defined as:

dr(I) = max{0, I(rbody)− I(rhead)} (6)

By using Definition 10, one can show that the closer the
interpretation of a grounded rule r is to 1, the smaller its
distance to satisfaction. A PSL model induces a distribution
over interpretations I . LetR be the set of all grounded rules,
then the probability density function is:

f(I) =
1

Z
exp[−

∑
r∈R

λr(dr(I))
p] (7)

where λr is the weight of rule r, Z =∫
I
exp[−

∑
r∈R λr(dr(I))

p] is a normalization constant, and
p ∈ {1, 2} provides a choice of two different loss functions,
p = 1 (i.e., linear), and p = 2 (i.e, quadratic). These

probabilistic models are instances of hinge-loss Markov
random fields (HL-MRF) (Bach et al. 2017). The goal of
maximum a posteriori (MAP) inference is to find the most
probable truth assignments IMPE of unknown ground atoms
given the evidence which is defined by the interpretation I .
Let X be all the evidence, i.e., X is the set of ground atoms
such that ∀x ∈ X, I(x) is known, and let Y be the set of
ground atoms such that ∀y ∈ Y, I(y) is unknown. Then we
have

IMAP(Y ) = argmax
I(Y )

P (I(Y )|I(X)) (8)

Maximizing the density function in Equation 7 is equiv-
alent to minimizing the weighted sum of the distances to
satisfaction of all rules in PSL.
Example 8. The simplified PSL model for the paper review-
ing problem in Example2 is given in Table 1. The goal of
MAP inference for this problem is to infer authors whom
present at the conference (i.e., authors with an accepted pa-
per) given the paper summaries. We simplified the model by
assigning the same weight to rules R1 to R6 (i.e., λi = 1
where i = {1, 2, 3, 4, 5, 6}). Bellow we explain the meaning
of each rule in the model.

Rule R1 indicates that having a positive summary is re-
sulted from two positive reviews and similarly rule R2 ex-
presses that a negative summary of a paper is derived from
negative reviews. Rule R3 indicates that submitting a posi-
tive review reduces the chances of another positive review by
the same reviewer. And rules R4 and R5 indicate that high
quality papers receive positive reviews. Rule R6 indicates
the prior that not all submitted papers are high quality pa-
pers. We also have two hard constraints (i.e., rules R7 and
R8) where weight of the rules are∞. These two rules show
that a high quality paper should get accepted and the author
presents the accepted paper at the conference.

6 Fairness-aware PSL (FairPSL)
The standard MAP inference in PSL aims at finding val-
ues that maximize the conditional probability of unknowns.
Once a decision is made according to these values, one can
use the fairness measure to quantify the degree of discrimi-
nation. A simple way to incorporate fairness in MAP infer-
ence is to add the δ-fairness constraints to the corresponding
optimization problem.

Consider risk difference, RD, where RD ≡ a
n1
− c

n2
. The

δ-fairness constraint −δ ≤ RD ≤ δ can be encoded as the
following constraints:

n2a− n1c− n1n2δ ≤ 0 (9)
n2a− n1c+ n1n2δ ≥ 0 (10)

Similarly, from RR ≡ a/n1

c/n2
and the δ-fairness constraint

1− δ ≤ RR ≤ 1 + δ we obtain:

n2a− (1 + δ)n1c ≤ 0 (11)
n2a− (1− δ)n1c ≥ 0 (12)

And finally, RC ≡ 1−a/n1

1−c/n2
and the δ-fairness constraint

1− δ ≤ RC ≤ 1 + δ gives:

− n2a+ (1 + δ)n1c− δn1n2 ≤ 0 (13)
− n2a+ (1− δ)n1c+ δn1n2 ≥ 0 (14)



R1: λ1: PositiveSummary(p) ∧ PositiveReview(r2, p) ∧ (r1 6= r2)→ PositiveReview(r1, p)
R2: λ2: ¬PositiveSummary(p) ∧ Reviews(r, p)→ ¬PositiveReview(r, p)
R3: λ3: PositiveReview(r, p1) ∧ Reviews(r, p2)→ ¬PositiveReview(r, p2)
R4: λ4: HighQuality(p) ∧ Reviews(r, p)→ PositiveReview(r, p)
R5: λ5: ¬HighQuality(p) ∧ Reviews(r, p)→ ¬PositiveReview(r, p)
R6: λ6: ¬HighQuality(p)
R7: ∞: HighQuality(p) ∧ Submits(a, p)→ Presents(a)
R8: ∞: ¬HighQuality(p) ∧ Submits(a, p)→ ¬Presents(a)

Table 1: A simplified PSL model for the Paper Reviewing problem

A primary advantage of PSL over similar frameworks is
that its MAP inference task reduces to a convex optimization
problem which can be solved in polynomial time. To pre-
serve this advantage, we need to ensure that the problem will
remain convex after the addition of δ-fairness constraints.

Theorem 1. The following condition is sufficient for pre-
serving the convexity of MAP inference problem after addi-
tion of δ-fairness constraints: The formulae F1[v] and F2[v]
do not contain an atom y ∈ Y and all atoms in F1[v] and
F2[v] have values zero or one.

Proof. Since I(F1[v]) and I(F2[v]) do not depend on I(Y ),
the values n1 and n2 are constants that can be computed in
advance. Let us define the sets Da

v = {v ∈ Dv : F1[v] ∧
F2[v] is true} and Dc

v = {v ∈ Dv : ¬F1[v] ∧ F2[v] is true}.
Since F1[v] and F2[v] can be only zero or one, we can
rewrite the equations 1 and 2 as:

a =
∑

v∈Da
v

I(¬d(v)) = |Da
v | −

∑
v∈Da

v

I(d(v))

c =
∑
v∈Dc

v

I(¬d(v)) = |Dc
v| −

∑
v∈Dc

v

I(d(v))

which indicates that a and c can be expressed as linear
combinations of variables in the optimization problem. This
means that constraints 9-14 are linear. Hence, addition of
these constraints preserves the convexity of the optimization
problem.

7 Experiments
We show the effectiveness of FairPSL by performing an em-
pirical evaluation. We investigate two research questions in
our experiments:

Q1 What is the effect of the fairness threshold δ on the fair-
ness measures RD/RC/RR?

Q2 How are the accuracy of predictions affected by impos-
ing the δ-fairness constraints?

We implemented the MAP inference routines of PSL and
FairPSL in python using the convex optimization library
CVXPY‡ (Diamond and Boyd 2016). The FairPSL code,
code for the data generator and data will be made publicly
available upon publication of the paper.

‡https://cvxgrp.github.io/cvxpy/

Figure 1: The model used for generating the datasets. There are
five binary random variables, S, Q, H, R1, R1 and Y. S: indicates
whether or not the author is a student; Q: indicates whether or not
the paper is high quality; H: indicates whether or not the author
is affiliated with a top-rank institute (observed); R1, R2: indicates
whether or not the first/second reviewer gives the paper a positive
review; Y: indicates whether or not the area chair writes a positive
summary.

Data generation
We evaluate the FairPSL inference algorithm on synthetic
datasets representing the paper reviewing scenario (intro-
duced in Example 2). The parameters for the synthetic data
generator are set as follows: we assume that there are 20 in-
stitutes. Each institute is equally likely to be top-rank or not.
The number of papers submitted from each institute follows
a binomial(10, 0.5) distribution. The number of reviewers is
assumed to be 30. For each paper, two reviewers are ran-
domly assigned (If the two reviewers happen to be the same,
we repeat this procedure).

For each paper, we use the generative model of Fig-
ure 1 to draw assignments for all the random variables. Note
that the conditional probability table for the review vari-
able Ri is parameterized by two values (θ1, θ2) which to-
gether determine the degree of discrimination against the
protected group. We generated three datasets using these
values (0.3, 0.7), (0.6, 0.6), and (0.5, 0.9) for parameters
(θ1, θ2). Each dataset has around 100 papers (i.e., dataset



Figure 2: Score of predictions obtained by MAP inference of PSL and FairPSL, according to the fairness measures RD, RR, and RC. The
labels of datasets are mentioned with parenthesis next to the inference method. The FairPSL values of each measure are obtained by adding
the δ-fairness constraint of that measure.

#1 has 102 papers, dataset #2 has 109 papers and dataset
#3 has 101 papers).

MAP Inference We use the model presented in Table 1 for
MAP inference in PSL and FairPSL (Recall that in FairPSL,
the δ-fairness constraints corresponding to one of the fair-
ness measures are also added to the model). The only ob-
served atoms are PositiveSummary(P). The truth values for
all other atoms is obtained via MAP inference. We use the
truth values obtained for the decision atoms Presents(A) to
compute the fairness measures. We defined the discrimina-
tive pattern, the protected and unprotected groups of this
problem in Section 3.

Evaluation results
To answer Q1, we run the MAP inference algorithm of
PSL and FairPSL on three synthetic datasets. We run
the MAP inference of FairPSL multiple times on each
dataset: For each of the three fairness measures, we add
the corresponding δ-fairness constraint with five thresholds
{0.001, 0.005, 0.01, 0.05, 0.1, 0.5}.

Figure 2 shows the score of predictions in terms of the
three fairness measures. As expected, tighter δ-fairness con-
straints lead to better scores. Note that the best possible score
according to RD is zero, as it computes a difference. Since
RR and RC compute ratios, the best possible score accord-
ing to these measures is one. In our experiments, with any
of these measures, taking δ = 0.001 pushes the score of
predictions to its limit.

The δ-fairness constraints modify the optimization prob-
lem of MAP inference by reducing its feasible region to
solutions that conform with fairness guarantees. Research
question Q2 is concerned with the effect of this reduc-
tion on the accuracy of predictions. To answer this ques-
tion, we compare the inferred values for the decision atoms
Presents(A) against their actual values. These values are ex-
tracted from the known values of HighQuality(p) according
to rules 7 and 8 in Table 1. The results which are presented in
Table 2, include the area under the curve of the receiver op-
erating characteristic (ROC) of predicting the decision vari-
able for 4 groups. These groups are the protected group (i.e.,
acceptance of the students who are not affiliated with top-
rank institute), the unprotected group (i.e., acceptance of the
students who are affiliated with top-rank institute), the rest
of the authors (i.e., acceptance of the non-students), and all
authors. By doing so, we not only calculate the accuracy of

the prediction for the decision atom of the protected and un-
protected groups, but also we calculate it for other authors to
make sure that our fairness constraints do not propagate bias
towards other authors. The results of FairPSL with δ-fairness
constraints RR and RC are either equal or very close to the
results of FairPSL with δ-fairness constraints RD, therefore
due to the space limitation, we omit them from this table.
According to Table 2, the results of both PSL and FairPSL
in all three datasets are very close to each other. Although the
predictions of FairPSL for dataset#1 and dataset#3 are bet-
ter than PSL, it is not definitive that FairPSL improves the
predictions. We observe that prediction of MAP inference
for both FairPSL and PSL are similar, thus FairPSL guaran-
tees fairness without hurting accuracy. Further investigation
is required on the effect of the various discrimination ranges
on the prediction results of FairPSL (i.e., θ1 and θ2), which
remains for our future work.

Dataset Approach Protected Unprotected Non-students All

#1 PSL 0.935 0.722 0.882 0.834
FairPSL(RD) 0.924 0.726 0.887 0.887

#2 PSL 0.575 0.944 0.877 0.810
FairPSL(RD) 0.541 0.838 0.829 0.776

#3 PSL 0.926 0.727 0.701 0.762
FairPSL(RD) 0.931 0.737 0.769 0.793

Table 2: ROC of predictions for truth values of unknown atoms
Presents(A) using MAP inference of PSL and FairPSL with δ-
fairness constraints RD with δ = 0.001.

8 Conclusion and Future Direction
Many applications of AI and machine learning affect peo-
ples’ lives in important ways. While there is a growing body
of work on fairness in AI and ML, it assumes an individ-
ualistic notion of fairness. In this paper, we have proposed
a general framework for relational fairness which includes
both a rich language for defining discrimination patterns and
an efficient algorithm for performing inference subject to
fairness constraints. We show our approach enforces fariness
guarantees while preserving the accuracy of the predictions.

There are many avenues for expanding on this work. For
example, here we assumed that the discriminative pattern
is given, however an automatic mechanism to extract dis-
criminatory situations hidden in a large amount of decision
records is an important and required task. Discrimination
discovery has been studied for attribute-based fairness (Pe-
dreschi, Ruggieri, and Turini 2013). An interesting next step
is discrimination pattern discovery in relational data.
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