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Abstract
Social choice is replete with various settings including single-
winner voting, multi-winner voting, probabilistic voting,
multiple referenda, and public decision making. We study
a general model of social choice called sub-committee vot-
ing (SCV) that simultaneously generalizes these settings.
We then focus on sub-committee voting with approvals and
propose extensions of the justified representation axioms
that have been considered for proportional representation in
approval-based committee voting. We study the properties
and relations of these axioms. For each of the axioms, we
analyse whether a representative committee exists and also
examine the complexity of computing and verifying such a
committee.

Introduction
Social choice is a general framework of preference aggrega-
tion in which voters express preferences over outcomes and
a desirable outcome is selected based on the preferences of
the voters (Aziz et al. 2017a; Conitzer 2010). It has also been
motivated as being especially relevant to ethical and prin-
cipled decision making in multi-agent settings (Conitzer et
al. 2017). The most classic model of social choice is (single
winner) voting in which voters express preferences over a set
of alternatives and exactly one alternative is selected (Brams
and Fishburn 2002). A natural generalization of the model
is muti-winner voting or committee voting in which a set
of alternatives is selected (Faliszewski et al. 2017). Another
model is multiple referenda in which voters vote over mul-
tiple but independent binary decisions (Brams, Kilgour, and
Zwicker 1997). Probabilistic versions of single-winner vot-
ing have also been examined (Gibbard 1977).

In this paper, we study a natural model of social choice
that simultaneously generalizes all the social choice settings
mentioned above. The advantage of considering a more gen-
eral combinatorial model (Lang and Xia 2016) is that instead
of coming up with desirable axioms, rules, and algorithms in
a piecemeal manner for different settings, one can design or
apply general principles and approaches that may be com-
pelling for a wide range of settings. Of course certain ax-
ioms may only be meaningful for a certain subsetting but as
we show in this paper, a positive algorithmic or axiomatic
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result for well-justified axioms can be viewed favourably
for all relevant sub-settings as well. Another advantage of
formalising a general model is that it provides an opportu-
nity to unify different strands of work in social choice. Our
model also helps approach the committee voting problem in
which there are additional diversity constraints possibly re-
lating to gender, race or skill. Finally, our model applies to
general participatory budgeting scenarios (Cabannes 2004)
where multiple decisions needs to be made and the minority
representation needs to be protected.

After formalizing the SCV (sub-committee voting) set-
ting, we focus on a particular restriction of SCV in which
agents or voters only express approvals over some of the al-
ternatives or candidates. The restriction to approvals is desir-
able because approvals capture dichotomous/binary prefer-
ences that are prevalent in many natural settings. Secondly,
ordinal and cardinal preferences coincide when preferences
are dichotomous. This is desirable since elicitation of car-
dinal utilities has been considered controversial in decisions
concerning public goods.

SCV with approvals can be viewed as a multidimensional
generalization of approval-based committee voting (Kilgour
2010). For approval-based committee voting, a particularly
appealing axiom that captures representation is justified rep-
resentation (JR) that requires that a set of voters that is large
enough and cohesive enough in their preferences should
get at least one approved candidate in the selected commit-
tee. The axiom has received considerable attention (Brill et
al. 2017; Sánchez-Fernández, Fernández, and Fisteus 2016;
Sánchez-Fernández et al. 2017). For SCV with approvals,
we extend the justified representation axiom (Aziz et al.
2017b) that has only been studied in the context of com-
mittee voting.

One interesting application captured by this SCV frame-
work, which is not possible under standard models, is com-
mittee voting in the presence of diversity constraints or quo-
tas. Considering this application highlights the conflict be-
tween diversity constraints and the original axioms of fair, or
justified, representation. As will be shown this conflict leads
to conceptual issues of what is the ‘appropriate’ generalisa-
tion of the JR axiom for SCV instances and also technical
issues such as existence and computational intractability of
achieving certain axioms whilst diversity constraints are en-
forced.



Contributions Our contributions are threefold with the
first two being conceptual contributions.

Firstly, we study a natural model of social choice called
SCV (sub-committee voting) that simultaneously general-
izes several previously studied settings.

Secondly, we focus on approval-based SCV and present
new notions of justified representation (JR) concepts in-
cluding Intra-wise JR (IW-JR) and Span-wise JR (SW-
JR). These distinct notions lead to ‘local’ and ‘global’ ap-
proaches to representation, respectively. These notions ad-
dress the push in AI to formalize fairness in decision-making
scenarios so that socially beneficial outcomes can be identi-
fied.

Thirdly, we present technical results concerning the ex-
tent to which these properties can be satisfied. We show that
although SW-JR is a natural extension of JR to the SCV set-
ting, a committee satisfying SW-JR may not exist even under
severe restrictions. Furthermore, checking whether there ex-
ists a committee satisfying SW-JR is NP-complete. The re-
sults always show that the more general setting SCV is con-
siderably more challenging than approval-based committee
voting. We then formalize a weakening of SW-JR called
weak-SW-JR and present a polynomial-time algorithm that
finds a committee that simultaneously satisfies weak-SW-JR
and IW-JR. We also propose two natural generalizations of
PAV (Proportional Approval Voting), a well-known rule for
committee voting under approvals. However we show that
neither of these two extensions satisfies both weak-SW-JR
and IW-JR.

Sub-committee Voting
We propose a new setting called SCV that general-
izes a number of voting models. The setting is a tuple
(N,C, π, q,%)

• N = {1, . . . n} is the set of voters/agents.

• C = {c1, . . . , cm} is the set of candidates.

• π = {C1, . . . , C`} is a partitioning of the candidates.
Each Cj is referred to as a candidate subset from which a
sub-committee is to be chosen.

• q is the quota function that specifies the number of candi-
dates q(Cj) = kj to be selected from each subset Cj . We
denote

∑`
j=1 kj by k.

• % = (%1, . . . ,%n) specifies for each agent i, her pref-
erences/utilities over C. We allow the possibility that an
agent does not compare candidates across candidate sub-
sets. At a minimum it is required that each %i is transitive
and complete within each subset Cj , however additional
restrictions can be introduced, as befitting the setting; they
might even be replaced with cardinal utilities

An SCV outcome p specifies a real number p(c) for each
c ∈ C with the following constraints:

0 ≤ p(c) ≤ 1 for all c ∈ C∑
c∈C

p(c) = k and
∑
c∈Cj

p(c) = kj for all j ∈ {1, . . . , `}.

In this paper we restrict our attention to discrete outcomes
so that p(c) ∈ {0, 1} but in general SCV can allow for prob-
abilistic outcomes where p(c) is the probability of select-
ing candidate c. For discrete outcomes, an outcome W will
be a committee of size k that consists of ` sub-committees
W1, . . . ,W` where each Wj ⊆ Cj and |Wj | = kj .

If ` = 1, p(c) ∈ {0, 1} for all c ∈ C and k = 1, we are in
the voting setting. If ` = 1, p(c) ∈ {0, 1} for all c ∈ C,
we are in the committee/multi-winner voting setting (Fal-
iszewski et al. 2017). If ` = 1 and k = 1, we are in the
probabilistic voting setting (Gibbard 1977). If p(c) ∈ {0, 1}
for all c ∈ C and ki = 1 for all i ∈ {1, . . . , `}, we are
in the public decision making setting (Conitzer, Freeman,
and Shah 2017). Note that public decision making setting is
equivalent to the “voting on combinatorial domain” setting
studied by Lang and Xia (2016). The latter setting allows
for more complex preferences over the set of combinatorial
outcomes but the preferences may not be polynomial in the
number of candidates and voters. If p(c) ∈ {0, 1} for all
c ∈ C and ki = 1 for all i ∈ {1, . . . , `} and |Cj | = 2
for all j ∈ {1, . . . , `}, we are in the multiple-referenda set-
ting (Brams, Kilgour, and Zwicker 1997; Lacy and Niou
2000; Çuhadaroğlu and Lainé 2012).
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Figure 1: Relations between settings. An arrow from (A) to
(B) denotes that setting (A) is a restriction of setting (B).

At a very abstract level, even a bicameral legislature can
be viewed as an SCV setting in which ` = 2. Even if there
are no explicit multiple committees, there can be diversity
constraints imposed on the committee that can be easily
modelled as an SCV problem. For example, the problem of
selecting five people with 3 women and 2 men can be viewed
as an SCV problem with two candidate subsets.

In this paper, we will focus exclusively on approval-based
voting in the SCV setting. In approval-based voting we re-
place each agent i’s preference %i with an approval ballot
Ai ⊆ C which represents the subset of candidates that she
approves. The list A = (A1, . . . , An) of approval ballots
is referred to as the ballot profile. As per the general SCV
setting introduced at the start of the section, the goal is to
select a target k number of candidates from C which satisfy
the quota function for each candidate subset.



Justified Representation in Approval-based
Sub-committee Voting

We now focus on the SCV setting in which each agent ap-
proves a subset of the candidates. Based on the approvals,
the goal is to identify a fair or representative outcome. Note
that if ` = 1, we are back in the committee voting setting.
The approval-based SCV setting can be seen as capturing `
independent committee voting settings.

For the approval-based committee voting setting, justified
representation (JR) is a desirable property.
Definition 1 (Justified representation (JR)). Given a ballot
profile A = (A1, . . . , An) over a candidate set C and a
target committee size k, we say that a set of candidates W
of size |W | = k satisfies justified representation for (A, k) if
∀X ⊆ N :

|X| ≥ n

k
and |∩i∈XAi| ≥ 1 =⇒ (|W ∩(∪i∈XAi)| ≥ 1)

One natural extension of JR to the case of SCV is to treat
each candidate subset as an independent committee voting
problem. Then an SCV outcome satisfies Intra-wise JR (IW-
JR) if each sub-committee satisfies JR.
Definition 2 (Intra-wise JR (IW-JR)). An SCV outcome W
satisfies Intra-wise JR (IW-JR) if ∀X ⊆ N and ∀j ∈
{1, . . . , `}:

|X| ≥ n

kj
and |(∩i∈XAi) ∩ Cj | ≥ 1

=⇒ (|W ∩ Cj ∩ (∪i∈XAi)| ≥ 1)

We note that since a committee satisfying JR can al-
ways be attained by a polynomial-time algorithm (Aziz et
al. 2017b), IW-JR is easy to achieve by treating each sub-
committee voting as a separate committee voting problem.

The limitation of this approach is that it could be that
each time the same voters are unrepresented in each sub-
committee and they may ask for some representation in
at least some sub-committee. Thus IW-JR can be consid-
ered as a ‘local’ JR axiom which ignores whether or not
a given voter has already been represented in some other
sub-committee.

In view of this limitation, another extension of JR to the
case of SCV is to impose a JR-type condition across all sub-
committees.1 The definition of SW-JR is identical to the def-
inition of JR for the committee voting setting.
Definition 3 (Span-wise JR (SW-JR)). An SCV outcome W
satisfies Span-wise JR (SW-JR) if ∀X ⊆ N :

|X| ≥ n

k
and |(∩i∈XAi)| ≥ 1 =⇒ (|W∩(∪i∈XAi)| ≥ 1)

This approach to representation leads to a ‘global’ JR ax-
iom which aims to represent large, cohesive groups of voters
(i.e. X ⊆ N : |X| ≥ n/k and ∩i∈XAi 6= ∅) in some sub-
committee, but not necessarily a sub-committee where they
are cohesive.

1Imposing representation requirements across all sub-
committees implicitly assumes that the selections of all sub-
committees are of comparable significance to the voters.

Note that both SW-JR and IW-JR concern representation
that are not at the level of single individual but at the level
of large enough cohesive groups.2

Next we show that a SW-JR committee may not exist and
is NP-hard to compute.

(Non)-existence and complexity of SW-JR
committees

We show that a committee satisfying SW-JR may not exist
under either of the two restriction (1) there are exactly two
candidate subsets, and (2) ki = 1 for all i ∈ {1, . . . , `}.
Proposition 1. A committee satisfying SW-JR may not exist
even if there are exactly two candidate subsets and ki = 1
for i = 1, 2.

Proof. Consider an SCV instance where |N | = n = 2, C =
C1 ∪ C2 with C1 = {a1, a2} and C2 = {b1, b2}, and k1 =
k2 = 1. Note that n/k = 1.

If the approval ballots are A1 = {a1} and A2 = {a2},
then there is no SCV outcome W (i.e. a committee) which
satisfies SW-JR. This can be immediately observed since
SW-JR requires both voters to be represented, however the
quota k1 = 1 prevents this from being possible.

The reader may note that above proof utilises an example
where the voters have ballots which do not approve of any
voter in some candidate subset (i.e. Ai ∩ C2 = ∅). This
feature is not required to show the non-existence of an SW-
JR committee however, it greatly simplifies the example.

Above we proved that a committee satisfying SW-JR may
not exist. One could still aim to find such a committee when-
ever it exists. Next we prove that the problem of checking
whether a SW-JR committee exists or not is NP-complete.

Proposition 2. Checking whether an SW-JR committee ex-
ists or not is NP-complete.

To show that checking whether a SW-JR committee exists
is NP-complete we will reduce a given instance of the SET
COVER problem, a known NP-complete problem (Garey
and Johnson 1979), to an SCV instance - such that an SW-
JR committee exists if and only if the SET COVER instance
has a yes answer.

Below is a statement of the SET COVER problem.

SET COVER

Input: Ground set X of elements, a collection
L = {S1, . . . , St} of subsets of X such
that X = ∪tj=1Sj and an integer k′.

Question: Does there exist a H ⊂ L such that |H| ≤
k′ and X =

⋃
Sj∈H Sj

2In a related paper, Conitzer, Freeman, and Shah (2017) pro-
posed fairness concepts for Public Decision Making that is equiva-
lent to SCV in which ki = 1 for each i. They considered different
fairness notions that are based on proportional or envy-free allo-
cations. The concepts involve viewing agents independently and
are different from proportional representation concerns. When the
number of sub-committees is less than the number of voters, the
concepts they consider are trivially satisfied.



To build intuition for the formal proof, which follows, we
provide an overview of the reduction.

The SET COVER problem involves answering whether or
not there exists a collection of at most k′ subsets H ⊆ L
which cover another set X . This problem can be embedded
into an SCV instance by letting the setX represent the set of
voters and considering a candidate subset C2 such that each
element denotes an element of L; that is,

C2 = {s1, . . . , st}.

We then let each element of C2, say sj , be approved by vot-
ers i ∈ N = X if and only if i ∈ Sj . By appropriately defin-
ing quota values and voter approval ballots on the remaining
candidate subset C1 it is shown that an SW-JR committee
exists if and only if every voter is represented via a candi-
date in C2 – this of course possible if and only if we have a
yes-instance of the SET COVER problem

A formal proof is presented below.

Proof. We reduce a given SET COVER instance (X,L, k′)
to an SCV instance as follows: Let

N = X = {1, . . . , n}
C = C1 ∪ C2

= {a1, . . . , an} ∪ {s1, . . . , st}

denote the set of voters, candidate set and partition into two
candidate subsets. Let voter approval ballots be

Ai = {sj |i ∈ Sj},

and k1 = n, k2 = k′. Without loss of generality we may
assume that t ≥ k′, also note that k = n + k′ and so
n/k < 1.

Since every voter has a non-empty approval ballot (i.e.
N = X = ∪tj=1Sj) and n/k < 1, a committee satisfies
SW-JR if and only if every voter is represented.

If (X,L, k′) is a yes-instance of the SET COVER problem
then these exists a subset H with |H| = k′ such that N =
X =

⋃
Sj∈H Sj – it follows that the committee

W = C1 ∪ {si |Si ∈ H},

is a solution to the SCV problem and satisfies SW-JR. Con-
versely, if W is an SW-JR committee then the set

H = {Si | si ∈W},

provides a yes-instance to the SET COVER problem.

Weak-SW-JR
In the previous section we showed that a committee satis-
fying SW-JR need not exist, and checking whether it does
is NP-complete. Naturally and in the pursuit of a computa-
tionally tractable representation axiom we weaken the con-
cept of SW-JR. In this section we present a weak version of
SW-JR, appropriately referred to as weak-SW-JR. An SCV
outcome satisfying weak-SW-JR is guaranteed to exist and
is attainable via a polynomial-time algorithm.

Definition 4 (Weak-SW-JR). An SCV outcome W satisfies
weak-Span-wise Justified Representation (weak-SW-JR) if

∀X ⊆ N : |X| ≥ n

k
and

∣∣∣( ⋂
i∈X

Ai

)
∩ Cj

∣∣∣ ≥ 1 for all j

=⇒
∣∣∣W ∩ ( ⋃

i∈X

Ai

)∣∣∣ ≥ 1

Informally speaking, the weak-SW-JR axiom captures the
idea that if a “large”, cohesive set of voters unanimously
support at least one candidate in each candidate subset then
they require representation in some sub-committee.

First observe that weak-SW-JR is indeed a (strict) weak-
ening of the SW-JR concept.
Proposition 3. SW-JR implies Weak-SW-JR. But weak-SW-
JR does not imply SW-JR.

The next proposition states that for a given SCV instance
there may be three distinct committeesW satisfying, respec-
tively, weak-SW-JR but not IW-JR, IW-JR but not weak-
SW-JR, and both weak-SW-JR and IW-JR simultaneously.
That is, the weak-SW-JR and IW-JR representation axioms
are distinct but are not mutually exclusive (the proof can be
found in the supplement material).
Proposition 4. Weak-SW-JR does not imply IW-JR and IW-
JR does not imply weak-SW-JR. Also weak-SW-JR and IW-
JR are not mutually exclusive concepts.

Proof. We provide an example of an SCV instance which
admits three distinct SCV outcomes which satisfy

1. weak-SW-JR but not IW-JR
2. IW-JR but not weak-SW-JR
3. both weak-SW-JR and IW-JR.

Consider the SCV with |N | = 12,

C = C1 ∪ C2,

where C1 = {c1, . . . , c7}, C2 = {a, b, c}, k1 = 1 and k2 =
2. Let the approval ballots of each voter be as follows

Ai =


{ci, a} if i ∈ {1, 2, 3, 4, 5, 6}
{c7, b} if i ∈ {7, 8, 9, 10}
{c8, c} if i ∈ {11, 12}

First observe that for an SCV outcomeW to satisfy weak-
SW-JR the only set of voters which must be represented is
X = {7, 8, 9, 10} since they are a the only group of size
greater or equal to n/k = 4 who unanimously support a
voter in each of the candidate subsets i.e. c7 ∈ C1 and b ∈
C2 are approved by every voter i ∈ X .

Whilst, for an SCV outcome to satisfy IW-JR it is required
that the group X ′ = {1, 2, . . . , 6} are represented in C2 by
candidate a ∈ C2. This is because X ′ is the only group of
size greater or equal to n/k2 = 6 who unanimously support
a candidate in C2.

Thus it follows immediately that there exists three distinct
SCV outcomes which satisfy the three properties stated at
the beginning of this proof, namely;

Wweak-SW-JR = {c1, b, c}



satisfies weak-SW-JR but not IW-JR,

W IW-JR = {c1, a, c}
satisfies IW-JR but not weak-SW-JR and,

Wweak-SW-JR and IW-JR = {c7, a, c}.
satisfies both IW-JR and weak-SW-JR.

An Algorithm for weak-SW-JR and IW-JR
The previous sections have introduced two appealing repre-
sentation axioms, weak-SW-JR and IW-JR, which capture
distinct notions of representation or fairness. The former ax-
iom considers the structure of approvals across all candidate
subsets, whilst the latter axiom considers each candidate
subset as an independent event. This section will combine
these two axioms and consider SCV outcomesW which sat-
isfy both weak-SW-JR and IW-JR. We prove that a commit-
tee satisfying both weak-SW-JR and IW-JR is guaranteed to
exists for every SCV setting and such a committee can be
computed in polynomial-time.

We begin by presenting the following intermediate result
before providing a constructive existence proof of a commit-
tee which satisfies weak-SW-JR and IW-JR.
Lemma 1. Let {kj}`j=1 be a sequence of positive numbers
and {k′j}`j=1 be a sequence of non-negative numbers. Then,

∑̀
j=1

k′j∑`
i=1 ki

≤ max
j∈[`]

{k′j
kj

}
.

Proof. Let M = maxj∈[`]

{
k′
j

kj

}
and let wj =

kj∑
i ki

, then

M =
∑
j

wjM ≥
∑
j

wj

k′j
kj

=
∑
j

k′j∑
i ki

, as required.

Input: SCV instance (N,C, π, q,%)
Output: CommitteeW that satisfies both weak-SW-JR and

IW-JR.
1 Wj = ∅ for j = 1, . . . , `, W =

⋃
j Wj

2 For each candidate subset j = 1, . . . , `, allocate the can-
didates with support ≥ n/kj from highest to lowest in
support, removing the support of voters who are already
represented in Wj =W ∩ Cj .

3 From the remaining positions, consider unelected can-
didates who have support ≥ n/k among the unrepre-
sented voters. Allocate these from highest to lowest in
support removing the support of voters who are already
represented in W .

4 If there are remaining positions allocate in any way.

Algorithm 1: Algorithm that returns a committee which sat-
isfies both weak-SW-JR and IW-JR.

Proposition 5. A committee which satisfies both weak-SW-
JR and IW-JR always exists and can be attained via Algo-
rithm 1.

Proof. Consider Algorithm 1. We argue that the committee
W returned by Algorithm 1 satisfies both weak-SW-JR and
IW-JR.

First we show that IW-JR is satisfied. Suppose not, then
during step 2 for some j we allocated kj winning spots but
failed to represent a group, say X ⊆ N , of size at least n/kj
who unanimously supports some candidate(s) in Cj . How-
ever, at each stage at least n/kj additional voters are repre-
sented and so it must be the case that at least kjn/kj = n
voters were represented in W . That is, all voters have been
represented which contradicts the existence of the set X .
Thus IW-JR is always satisfied.

Now we show that weak-SW-JR is also satisfied. Suppose
that after step 2, |Wj | = k′j < kj for all j – if this were
not the case then weak-SW-JR is trivially satisfied since all
voters would then be represented in W . The proof now re-
duces to showing that there are enough ‘places’ left in W
after allocating the

∑
j k

′
j places in Step 2.

In the ‘worst case’ every allocation for each j represents
the same subset of voters – in this caseW represents≥ R :=
maxj{k′j n

kj
} voters with

∑
j k

′
j elected candidates. But then

there are

≤ n−R
n/k

=
n− nmaxj{

k′
j

kj
}

n/k
= k

(
1−max

j

{k′j
kj

})
possible mutually exclusive groups of size ≥ n/k which are
unrepresented in W . In the worst case, each of these groups
would unanimously support a different candidate in every
candidate subset and so correspond to a problem set with
respect to weak-SW-JR. Recall that we have k−

∑
j k

′
j win-

ning spots left and so suffices to show that

k −
∑
j

k′j ≥ k
(
1−max

j

{k′j
kj

})
. (1)

Note that we use the property that if problem set X ex-
ists they must unanimously support some candidate in ev-
ery sub-committee and so we can ignore the quota issues.
Finally, (1) follows immediately from dividing by k and ap-
plying Lemma 1.

Testing Representation
Testing for SW-JR and IW-JR are easy given the
polynomial-time testing of JR. Testing for weak-SW-JR
is more involved, we conjecture the complexity is coNP-
complete. Before we proceed, we outline the standard
approval-based voting setting and an algorithm identified by
Aziz et al. (2017b) to test JR.

Polynomial-time algorithm to verify JR
The standard setting of approval-based voting (AV) is a

special case of SCV. In particular, an AV instance is a tuple
(N,C, k,A) where N is a set of voters, C is the set of can-
didates, k is a positive integer and A is an approval ballot
profile. An AV outcome (or committee) is a subset W ⊆ C
such that |W | = k. Note, that this is simply a special case of
SCV when ` = 1, C1 = C and q(C1) = k.



The algorithm proposed by Aziz et al. (2017b) to test JR is
as follows: given an Approval Voting instance (N,C, k,A)
and outcome W , for each candidate c ∈ C compute

s(c) =
∣∣{i ∈ N : c ∈ Ai, Ai ∩W = ∅}

∣∣.
The set W fails to provide JR for (A, k) if and only if there
exists a candidate c with s(c) ≥ n/k.

With minor modifications, the above algorithm provides a
polynomial-time algorithm to test whether an SCV outcome
satisfies SW-JR and IW-JR.
Proposition 6. It can be checked in polynomial time
whether a given committee satisfies SW-JR or not.
Proposition 7. It can be checked in polynomial time
whether a given committee satisfies IW-JR or not.

Generalizing PAV to SCV
In the setting of approval-based multi-winner voting, the
Proportional Approval Voting (PAV) rule has been exten-
sively studied and shown to satisfy many desirable represen-
tation properties. It has been shown in (Aziz et al. 2017b)
that PAV committees satisfy JR, though computing a PAV
committee is NP-hard.3

Under PAV in the standard approval voting setting (AV),
each voter who has j of their approved candidates in the
committee W is assumed to derive utility of r(j) :=∑j

p=1 1/p if j > 0 and zero otherwise. The total utility of a
committee W is then defined as PAV(W ) =

∑
i∈N r(|W ∩

Ai|), this is known as the PAV-score. The PAV rule outputs
the committee W of size k which maximizes the PAV-score
among all committees of size k.

In this section we present two natural generalizations of
the PAV rule to the SCV setting. This leads to two distinct
PAV rules for the SCV setting. Neither proves useful is sat-
isfying both of the key SCV representation axioms; weak-
SW-JR and IW-JR. However, due to the success of the PAV
rule in the standard committee voting settings is important
discuss these variants.

Span-wise PAV (SW-PAV) is a generalization of the PAV
rule which assumes voters gain utility solely from the num-
ber of their approved candidates in W . Thus, each voter i
derives utility r(|W ∩Ai|) and the SW-PAV score of a com-
mittee W is

SW-PAV(W ) =
∑
i∈N

r(|W ∩Ai|).

Intra-wise PAV (IW-PAV) is a generalization of the PAV
rule which assumes voters gain utility from both the num-
ber of their approved candidates in W and also the diver-
sity across sub-committees. Thus each voter i derives utility
ρ(|W ∩Ai|) :=

∑
j∈[`] r(|W ∩Ai ∩Cj |), and the IW-PAV

score of a committee W is

IW-PAV(W ) =
∑
i∈N

ρ(|W∩Ai|) =
∑
j∈[`]

∑
i∈N

r(|W∩Ai∩Cj |).

3In fact PAV is viewed as one of the most compelling rules for
approval-based committee voting because it satisfies EJR a prop-
erty stronger than JR (Aziz et al. 2017b).

In both generalizations, a SW-PAV (IW-PAV) committee
is defined to be a committee W satisfying the SCV quota
conditions and maximizing the SW-PAV (IW-PAV) score.

To illustrate the distinction between SW-PAV and IW-
PAV the following example is provided. Consider a voter
i with approved and elected candidates {a, b, c} such that
{a, b} ∈ C1 and c ∈ C2. Then voter i’s contribution to the
SW-PAV score is 1 5

6 and her contribution to the IW-PAV
score is 2 1

2 .
Unfortunately, it can be shown that neither of these gener-

alizations produces a committee which guarantees both the
IW-JR and weak-SW-JR axioms. To be precise, IW-PAV sat-
isfies IW-JR but need not satisfy weak-SW-JR and, in a simi-
lar fashion, SW-PAV satisfies weak-SW-JR but need not sat-
isfy IW-JR. In the interest of space, however, we must omit
these results.

Discussion
In this paper we formalized a general social choice model
called sub-committee voting. We focussed on natural gen-
eralization of JR from the approval-based committee vot-
ing setting to the approval-based SCV setting. Some of the
results are summarized in Table 1. It will be interesting to
consider generalizations of stronger versions of justified rep-
resentation such as PJR and EJR. For example, IW-JR can
straightforwardly be strengthened to IW-PJR or IW-EJR.

It will be interesting to consider more general preferences
that need not be approval-based. Several research questions
that have been intensely studied in subdomains of SCV ap-
ply as well to SCV. For example, it will be interesting to
extend axioms and rules for single-winner or multi-winner
voting to that of SCV.

Representative Complexity
committee of

exists computing

SW-JR No NP-c
IW-JR Yes in P
weak-SW-JR Yes in P
IW-JR & weak-SW-JR Yes in P

Table 1: Properties of justified representation concepts for
sub-committee voting.

In any combinatorial setting, one can view the voting pro-
cess as either simultaneous voting or sequential voting (Bar-
rot and Lang 2016; Lang and Xia 2016; Freeman, Zahedi,
and Conitzer 2017b; 2017a). We formalized SCV as a static
model in which ` sub-committees are to be selected simulta-
neously. The representation notions that we formalized can
also be considered if voting over each sub-committee is con-
ducted sequentially over time. The axioms that we consider
such as SW-JR apply as well to understand the quality of an
outcome in these online or sequential settings.
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