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Abstract

Black-box risk scoring models permeate our lives, yet are
typically proprietary and opaque. We propose a transparent
model distillation approach to detect bias in such models.
Model distillation was originally designed to distill knowl-
edge from a large, complex teacher model to a faster, simpler
student model without significant loss in prediction accuracy.
We add a third restriction - transparency. In this paper we use
data sets that contain two labels to train on: the risk score
predicted by a black-box model, as well as the actual out-
come the risk score was intended to predict. This allows us to
compare models that predict each label. For a particular class
of student models - interpretable generalized additive models
with pariwise interactions (GA2Ms) - we provide confidence
intervals for the difference between the risk score and actual
outcome models. This presents a new method for detecting
bias in black-box risk scores by assessing if contributions of
protected features to the risk score are statistically different
from their contributions to the actual outcome.

Introduction
Risk scoring models have a long history of usage in criminal
justice, finance, hiring, and other critical domains that im-
pact people’s lives (Corbett-Davies et al.; Louzada, Ara, and
Fernandes). They are designed to predict a future outcome,
for example defaulting on a loan or re-offending. Worry-
ingly, risk scoring models are increasingly used for high-
stakes decisions, yet are typically proprietary and opaque.

One attempt to detect bias in risk scoring models could
be to reverse engineer them. However, this can be stymied
by the lack of access to all features and the same data sam-
ple used to create the model, or a means of determining how
close the result is to the true, unknown model. On the other
hand, one could study the actual outcome, testing for dis-
parate impact through methods such as training a model to
predict the outcome, removing, permuting, or obscuring a
protected feature (Adler et al.; Feldman et al.), and then re-
training the model to see if it changes. One challenge with
this approach is that advance knowledge of which feature to
act on is needed, and there may be biases in the data that are
not a priori known.

We propose a third approach - transparent model distil-
lation for bias detection - that examines both the risk score
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as well as the actual outcome, leveraging the difference be-
tween them to detect potential bias. The approach involves
training two separate models: a transparent student model to
mimic a black-box risk score teacher, and another transpar-
ent model to predict the actual outcome that the risk score
was intended to predict. We then ask the question:

Are there systematic differences in the risk scoring
model compared to the actual outcome?

Of particular concern is when such systematic differences
occur on protected features such as race. Hence, when we
train both models, we intentionally include all features that
may or may not be originally used to create the black-box
risk score, even protected features, specifically because we
are interested in examining what the model could learn from
these variables.

The student models we use are interpretable generalized
additive models with pairwise interactions (GA2Ms) (Lou,
Caruana, and Gehrke; Lou et al.; Caruana et al.) based on
a variant of short, boosted trees. We provide confidence in-
tervals for the difference between two models of this class,
which we then use to detect systematic differences between
the risk score and actual outcome. We study this class of
models in terms of accuracy, fidelity, and transparency, and
conduct comparisons to other student model candidates.

Related Work
Chouldechova and G’Sell proposed an approach to identify
subgroups where two classifiers differ in terms of fairness,
recursively partitioning covariate space by testing for homo-
geneity of a fairness metric of interest (e.g. false positive
rate) between the two classifiers (Chouldechova and G’Sell).
Our approaches differ in that they compare two classifiers
of the outcome whereas we compare a black-box risk score
and the outcome. Zhang and Neill work on a single model,
to identify subgroups where estimated outcome probabilities
differ significantly from observed probabilities (Zhang and
Neill). Like these approaches, we formulate bias detection
as a statistical hypothesis testing problem.

Method
Let D = {(ySi , yOi ,xi)}Ni=1 be a data set of size N , where
yS is a risk score and yO is the actual outcome the risk score
was intended to predict. Let yS = rS(x) be the true risk



scoring model. xi = (xi1, . . . , xip) is a vector of p features
for person i, and xj is the jth variable in feature space. Our
goal is to automatically detect regions of feature space where
the risk scoring model significantly differs from the actual
outcome.

Transparent Model Distillation for Bias Detection
Let M denote a class of transparent models. We first de-
scribe the proposed distillation setup before delving into the
choice of transparent model in the next section.

We train two models of classM:
Transparent Model Distillation

(Model S - regression): Student model of true black-
box risk score teacher rS :

yS = fS(x) (1)

(Model O - classification): Model of actual outcome.
g is the logistic link function:

g(yO) = fO(x) (2)

As in classic model distillation, if the student model
(Model S) is a high fidelity approximation of its teacher, we
can then attempt to understand rS by looking at fS . In other
words, whenever the unknown rS is needed, fS is used in-
stead. The model of the actual outcome (Model O) comes
into the picture because rS , now approximated by fS , was
designed to predict the actual outcome yO - precisely what
we trained fO to predict.

Our goal is to detect regions of feature space with system-
atic differences between yS and yO. Examining the contri-
bution of a protected feature to fS compared to fO will in-
variably yield differences. Hypothesis testing tells us if these
differences are real and systematic, or due to random noise.
Denoting feature xj’s contribution to the risk score student
model and outcome model as CS(xj) and CO(xj) respec-
tively, the null hypothesis of no bias - that a protected feature
does not contribute to the risk score any higher (or lower)
than it contributes to the actual outcome - is:

Detecting Bias Using Hypothesis Testing

Null hypothesis (no bias):

CS(xj) = CO(xj)

Two-sided alternative hypothesis:

CS(xj) 6= CO(xj)

The null hypothesis is rejected when the p-value, a func-
tion of P (CS(xj) − CO(xj)), is small. Hence we require
a model classM where the probability distribution and un-
certainty of the difference between a feature’s contribution
to two different models of the class is known or estimable.

Choice of Transparent Model ClassM
We use interpretable generalized additive models (Lou,
Caruana, and Gehrke; Lou et al.; Caruana et al.), a class of
transparent models based on a variant of bagged, short trees
learned using gradient boosting. Its transparency stems from

its additive form1:

g(y) = β0 +
∑

hj(xj) +
∑

hjk(xj , xk)

where each term hj(xj) is a shallow tree restricted to only
operate on one feature, and hjk(xj , xk) is again a shallow
tree but operating on two features. hj is called the shape
function of feature xj and can be plotted against xj in graphs
such as the red or green lines in Figure 1. hjk is the pairwise
interaction of xj and xk and can be visualized in a heat map
such as in Figure 2. This allows the contribution of any one
feature to the prediction to be directly examined, making
the model transparent. Multiple terms are learned together
using gradient boosting to obtain an additive formulation,
hence the name generalized additive models (GAMs). How-
ever, unlike classical GAMs where features are shaped using
splines, tree-based GAMs shape features using short trees.

We do not use decision trees, a popular class of transpar-
ent models, as their instability (Gibbons et al.) may lead to
spurious inferences of bias. Full complexity models such as
random forests and neural networks are accurate but lack
transparency and the contribution of individual features to
the prediction, while visualizable using partial dependence
plots, does not have estimable uncertainty, hence we do not
consider them. Linear models (including logistic regression)
are transparent and the difference in feature contributions
between two models of the same class is estimable like for
GA2Ms. We experiment on them as alternative student mod-
els below.

Characterizing the Distribution of Differences
Comparing the feature contributions across two models
presents some challenges; the Appendix details how we
solved them. Briefly, the first challenge is that one model
(Model S) performs regression and the other (Model O) per-
forms classification. We describe a way to make these fea-
ture contributions comparable. The second challenge is the
several possible sources of variation can affect the differ-
ence between these feature contributions, leading to spuri-
ous judgments of bias. We use a structured bagging setup
to remove avoidable sources of noise. Finally, we use a
bootstrap-of-little-bags approach to estimate variance and
covariances for feature contributions of this class of student
models. These covariance estimates account for the fact that
the same training observations with the same feature values
were used to train the two different models.

Experimental Setup
Data
We use publicly available data sets containing both a black-
box risk score and the actual outcome. Table 1 summarizes
them.

(1) COMPAS Risk Score and True Recidivism Out-
come: COMPAS, a proprietary score developed to predict
recidivism risk, has been the subject of scrutiny for racial
bias (Angwin et al., Kleinberg, Mullainathan, and Raghavan;

1g is the logistic link function for classification. For regression,
g is the identity function.



Table 1: Description of data sets

Data

Label 1 Label 2
Number of Number of Risk Score Outcome “Yes” or “No”

Observations Features Scale* Mean ± SD Baseline Rate
for “Yes” Class

COMPAS recidivism 6172 6 1 - 10 4.4± 2.8 0.46
Lending Club loans 42,506 28 A - G converted to 0 - 6 1.7± 1.4 0.15

* We use the convention that the higher the risk score, the more likely the outcome.

Chouldechova; Corbett-Davies et al.; Zafar et al.; Blomberg
et al.; Dieterich, Mendoza, and Brennan). Because the algo-
rithm does not use race as an input (Sam Corbett-Davies and
Goel), its proponents suggest that it is race-blind. ProPub-
lica collected, analyzed (Angwin et al.), and released data2

on COMPAS scores and true recidivism outcomes of defen-
dants in Broward County, Florida. Potentially protected fea-
tures in this data set are age, race, and sex.

(2) Lending Club Loan Risk Score and True Default
Outcome: Lending Club, an online peer-to-peer lending
company, makes public information on the loans it finances3.
We use a subset of five years (2007-2011) of loans. This
time period was chosen because all loans have matured, and
the outcome of whether the loan defaulted has been ob-
served. We use only individual, not joint loans, and remove
non-baseline features such as loan payment information that
could leak information into the label. Candidates for pro-
tected features in this data include state.

Training Procedure
We train a GA2M regression model on risk score and a
GA2M classification model on actual outcome. Each GAM
model is trained using 5000 gradient boosting iterations,
with the optimal number of iterations (≤ 5,000) selected
based on minimum validation set loss. For comparison, we
also train random forest models and linear and logistic re-
gression.

Evaluation Metrics
We assess fidelity, the notion that the student model should
match the teacher model (Craven and Shavlik 1995), using
the closeness of the student model to the teacher’s predic-
tions. In effect, this is the accuracy of the student model. We
also assess the accuracy of the outcome model.

Detecting Bias Using Confidence Intervals
To determine if the difference between the risk score la-
bel and outcome label models is statistically significant, we
could report p-values. However, the duality between con-
fidence intervals and hypothesis testing p-values affords a
quicker method - a visual inspection of whether the horizon-
tal line at y = 0 representing zero difference was within the

2https://github.com/propublica/
compas-analysis

3https://www.lendingclub.com/info/
download-data.action

confidence interval. If this is not the case, the null hypoth-
esis that there is no difference between the two models is
rejected.

Results
In this section we describe insights from comparing trans-
parent student models trained to predict black-box risk
scores to transparent models trained to predict actual out-
comes. We also validate that GAM models are good student
models. Due to space constraints, we describe our findings
on the Lending Club data in the Appendix.

Detecting Bias in COMPAS
Figure 1 shows shape plots for four features used by COM-
PAS for recidivism prediction: Age, Race, Number of Pri-
ors, and Gender. The top row shows what was learned by
the transparent models trained to predict either the COM-
PAS risk score (red), or true recidivism outcome (green).
The transparent model trained to mimic the COMPAS model
(red) gives insight into how the COMPAS model works,
where as the transparent model trained on the true outcome
shows what can be learned from the data itself. 95% confi-
dence intervals are shown for both models. The bottom row
of Figure 1 shows the difference between the red and green
terms in the top row, along with 95% confidence intervals for
this difference that takes into account the covariace between
the red and green terms.

COMPAS is biased for some age and race groups. Ex-
amining the plots on the left of Figure 1 for Age, we see
that the red mimic model and the green true outcome model
are very similar for ages 20 to 70: the confidence intervals
in the top plot overlap significantly, and the confidence inter-
vals in the difference plot (bottom row) usually include zero.
For Age greater than 70 where the number of samples is low
(bottom plot), the variance of the true-labels model is large
and there is not enough evidence to conclude that the mod-
els disagree. However, the difference between the COMPAS
mimic model and the true label model is significant for ages
18 and 19: the COMPAS model apparently predicts low risk
for very young offenders, but we see no evidence to sup-
port this in the model trained on the true labels where risk
appears to be highest for young offenders. This suggests an
interesting bias favoring young offenders in the COMPAS
model that does not appear to be explained by the data.

The next set of graphs in Figure 1 show risk as a function
of Race. COMPAS apparently predicts Native Americans
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Figure 1: Shape plots for four of six features for recidivism prediction. The remaining features are in the Appendix.
Top row: Red lines: effect of feature on COMPAS risk score. Green lines: standardized effect of feature on actual recidivism
outcome. Categorical terms ordered in decreasing predicted risk of the score. All plots mean-centered on the vertical axes to
allows individual terms to be easily added or subtracted from the model.
Bottom row: Blue lines: difference between score and outcome models (score - outcome).

are a high risk group, despite the fact that the model trained
on the true outcomes predicts this group is relatively low
risk. The COMPAS mimic model also predicts that African
Americans are higher risk, and that Caucasians are lower
risk, than the transparent model trained on the true labels
suggests is warranted. Apparently the COMPAS model is
even more biased against African Americans and towards
Caucasians than the (potentially biased) training data war-
rants.

COMPAS agrees with data on number of priors. In the
3rd column, the COMPAS mimic model and the true-labels
model agree on the impact of Number of Priors on risk —
the error bars overlap through most of the range and become
very wide when the largest difference is observed for more
than 30 priors.

Gender has opposite effects on COMPAS compared to
true outcome. In the 4th column, we see a discrepancy be-
tween what the COMPAS mimic model and the true-labels
model learned for Gender. The COMPAS model predicts
that Females are higher risk than the data suggests is correct
for women, and that males are lower risk than the data sug-
gests is correct for men. We suspect this difference arises be-
cause most of the training data is for males (bottom graph),
and that this COMPAS model is not as good at distinguish-
ing between male and female as it could be.

Pairwise interactions. Figure 2 shows one of the more
significant pairwise interactions the GA2M model for recidi-
vism. Interactions make GA2M models more accurate by al-

lowing them to model effects that can not be represented by
a sum of main effects on individual features. The interaction
in Figure 2 is between gender and number of prior convic-
tions. The graph on the left is the interaction for the stu-
dent model trained to mimic COMPAS, and the one on the
right is for the model trained on the true outcomes. The two
graphs are qualitatively similar, suggesting that COMPAS
models this interaction similarly to how the model trained
on the raw outcomes models it. Both models are essentially
flat for males (the top of each graph). Both graphs, however,
increase risk significantly for females with more than 10-20
priors, and reduce risk for females with few prior convic-
tions. We suspect that this interaction would not be neces-
sary if the data consisted only of males or only of females
because these effects could then be absorbed into the priors
main effect. Because this data is predominantly male, the
main effect for number of priors is more correct for males
than for females, and the interaction between gender and
priors is used to correct the model for females because there
apparently is a significant difference between the impact of
number of priors on risk for the two genders.

Are GA2Ms Successful Mimic Models: Fidelity?
We compared the accuracy of interpretable GA2Ms in pre-
dicting its teacher black-box risk score to that of another
class of transparent student models - logistic regression - and
a non-transparent student model - random forests. The re-
sults are in Table 2. For both risk scores, GA2M has RMSE
similar to random forests and lower than logistic regression.
None of the methods could go lower than RMSE of 2 on



Figure 2: Pairwise interaction between gender and number of priors for recidivism prediction. The heatmap on the left is for the
student trained to mimic the COMPAS scores. The heatmap on the right is trained on the actual recidivism outcomes.

a 1-10 scale, likely reasons why the COMPAS risk score is
challenging to predict include the lack of essential features
from the public data set released, and its smaller number of
observations compared to modern data sets.

Are GA2Ms Successful Mimic Models:
Transparency?
We compare the GAM estimated effects to that of linear
and logistic regression. For categorical features, GA2Ms are
equivalent to logistic regression. However, for continuous
features, the difference between GA2Ms and logistic regres-
sion is significant. Consider Figure in the Appendix, which
is the equivalent of the bottom row of Figure 1. Where the
GAM model was able to shape the age feature in a non-linear
manner across the age range, and detected systematic bias in
the young and old ages, logistic regression ascribes only one
number as the effect of the age variable on the predicted out-
come. This resulted in no systematic difference detected (be-
cause the bar graph for the first column, age, is at at y=0 in
Figure . This example demonstrates that the use of GA2Ms
for bias detection is especially valuable when the data has
many continuous features that the GA2M is able to shape in
interesting ways.

Discussion
Bias Discovery via Hypothesis Testing
One of the key advantages of using transparent models to un-
derstand bias in data, and bias in black-box models trained
on that data, is that you do not need to know in advance what
biases to look for. Examining the black-box model often
shows bias that would not have been anticipated in advance.
For example, in addition to the expected bias on race, the
COMPAS recidivism model appears also to be biased in fa-
vor of very young offenders age 18-19, and against women.
Once unexpected biases like these are discovered by exam-
ining the transparent model, further testing can be done to
study the bias and determine its source. Not having to know
what to look for in advance is very useful because there are

many kinds of bias in real data, some of which we would not
have known to look for or design statistical tests to test for.

Detecting Used and Unused Variables
One way to evaluate if a transparent student model trained to
mimic a black-box model can provide insight into the black-
box model is to test if the student model can distinguish be-
tween variables that are used or not used in the black-box
model. The Chicago Police Department dataset contains 16
variables that could be used for prediction, but the descrip-
tion of their model states that only eight of these variables
are used in the model.

We trained a transparent student model to mimic their
model, and intentionally included all 16 variables in the stu-
dent model. Figure 4 shows main effects learned by the stu-
dent model for the eight features the Chicago Police De-
partment used in their model, and Figure 5 in the Appendix
shows the main effects learned by the student model for fea-
tures the Department says were not used in their model. As
in other figures, red is what the transparent student model
learns when trained to mimic the Chicago Police Depart-
ment model, and green is what the transparent model learns
when trained on true outcomes. There is very little red visi-
ble in Figure 5: the transparent model trained to mimimc the
Police Department model correctly learns to put almost zero
weight on the features not used in the Police Department
model. But there is significant green in most of the graphs in
Figure 4 in the Appendix: transparent models trained on the
true outcome find these variables useful to predict risk even
if the decision was made not to use them in the Chicago
model.

This confirms that the transparent student mimic model is
able to properly detect when variables are not used in the
black-box teacher model if there is little or no bias on these
variables. This is important not only because it shows that
transparent student models can be used to tell what features
are used in a black-box model, but also because it increases
the fidelity of the student model to the black-box model — if
the student puts little or no weight on the same features not
used in the black-box model, then it is more likely to model



Table 2: Fidelity of student model of teacher risk score (first row of each data set) and accuracy of outcome model (second row
of each data set).

Data Metric Linear / Logistic GAM GA2M Random Forest
Regression

Compas Risk score (1-10) RMSE 2.09± 0.014 2.01± 0.031 1.99± 0.032 2.02± 0.019
Actual outcome AUC 0.74± 0.007 0.74± 0.016 0.75± 0.015 0.73± 0.013

Lending Club Risk score (0-6) RMSE 0.46± 0.002 0.25± 0.002 0.23± 0.003 0.21± 0.005
Actual outcome AUC 0.68± 0.010 0.70± 0.015 0.71± 0.015 0.69± 0.010

the effects of features that were used in the black-box model
correctly.

When comparing what a transparent student learns from
the black-box with what a transparent model learns from the
raw data, it is valuable to train the transparent model on the
raw data two different ways: 1) using all available features
to see what could have been learned from the original tar-
gets, and 2) using only those features used in the black-box
model for direct comparison with a student model trained
using only those features to mimic the black-box. Because
of space restrictions we do not include both of these in this
paper; to avoid confusion, the model presented in green in
both Figures 4 and 5 are from the same transparent model
trained on all 16 features. In Figure 4 there is strong evidence
that both the Chicago black-box model, and a transparent
model trained on the true outcome, find the eight features
used in the Chicago model useful, but there are significant
differences between how the two models use these features
because the transparent model trained on the true outcomes
(green) uses all 16 features and places significant mass on
the 8 unused features, thus altering what is learned by the
true outcome model on the other eight features that are used
by the Chicago model.

Using Excluded Variables to Detect Bias
Sometimes we are interested in detecting bias on variables
that have intentionally been excluded from the black-box
model. For example, a model trained for recidivism predic-
tion or credit scoring is probably not allowed to use race as
an input to prevent the model from learning to be racially bi-
ased. Unfortunately, excluding a variable like race from the
inputs does not prevent the model from learning to be bi-
ased. Racial bias in a data set is likely to be in the outcomes
— the targets used for learning; removing the race input race
variable does not remove the bias from the targets. If race
was uncorrelated with all other variables (and combinations
of variables) provided to the model as inputs, then removing
the race variable would prevent the model from learning to
be biased because it would not have any input variables on
which to model the bias. Unfortunately, in any large, real-
world data set, there is massive correlation among the high-
dimensional input variables, and a model trained to predict
recidivism or credit risk will learn to be biased from the cor-
relation between other input variables that must remain in
the model (e.g., income, education, employment) and the ex-
cluded race variable because these other correlated variables
enable the model to more accurately predict the (biased) out-

come, recidivism or credit risk. Unfortunately, removing a
variable like race or gender does not prevent a model from
learning to be biased. Instead, removing protected variables
like race or gender make it harder to detect how the model
is biased because the bias is now spread in a complex way
among all of the correlated variables, and also makes cor-
recting the bias more difficult because the bias is now spread
in a complex way through the model instead of being lo-
calized to the protected race or gender variables. The main
benefit of removing a protected variable like race or gender
from the input of a machine learning model is that it allows
the group deploying the model to claim (incorrectly) that
they model is not biased because it did not use the protected
variable.

When training a transparent student model to mimic a
black-box model, we intentionally include as an input vari-
able any protected variables that the model excluded, but for
which we are interested in detecting bias. We are careful to
include both race and gender as input variables on the trans-
parent student mimic model, and on the transparent model
trained to predict the true outcomes, specifically because we
are interested in examining what the model learns from these
variables. If, when the student model mimics the black-box
model, it does not see any signal on the race or gender vari-
able and learns to model them as flat (zero) functions, this
indicates whether the teacher model (the black-box model)
probably did or did not use these variables, but also if the
teacher model exhibits race or gender bias even if the model
did not use race or gender as inputs.

Conclusion
We propose a method to detect bias in black-box risk mod-
els by using model distillation to train a transparent student
model to mimic the black-box model, and then comparing
the transparent mimic model to a transparent model trained
using the same features on true outcomes instead of the la-
bels predicted by the black-box model. Differences between
the transparent mimic and true-labels model indicate differ-
ences between how the black-box model makes predictions,
and how a model trained on the true outcomes makes predic-
tions, highlighting potential biases in the black-box model.
We demonstrate this method on two data sets and uncover a
number of interesting differences (potential biases). The key
advantages of this approach are that the transparent models
are very accurate despite being intelligible, the method gen-
erates reliable confidence intervals to aid interpretation, and
one does not to know in advance what biases to look for.
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Appendix
Characterizing the Distribution of Differences
Making Outcomes and Scores Comparable. Additive
models built on different labels are measured in different
units. In our approach, binary outcomes result in additive
effects measured in units of inverse logit probabilities while
those based on scores are given by the units of the score. In
order to make these comparable, we construct standardized
effects by subtracting the average from each effect and scal-
ing by its standard deviation. Specifically, for each effect we
compare terms of the form

h∗j (xj) =
hj(xj)−

∫
hj(s)ds√∫

(hj(s))
2
ds−

(∫
hj(s)ds

)2 . (3)

between models. These terms are now dimensionless
(Neukrug and Fawcett 2014) and centered on zero and can
be compared.

Structured Bagging Setup. Given the dataset, we ran-
domly select 15% of the samples to be the test set. The re-
maining 85% of the data is further split into training (70%
of the data) and validation (15%). The random split of this
85% of the data into train and validation is repeated L times
(while keeping the test set constant), and the model predic-
tions and feature contributions are averaged. This whole pro-
cess (selecting a test set and then performing L folds of the
remaining data) is repeated K times. Figure illustrates this.



Figure 3: Logistic regression difference between score and outcome models.

We use the same K outer folds and L inner folds to train
both models, and compare the models within each inner fold.
This removes variation due to training the two models on
different splits of the data.

Variance Estimation. Sexton and Laake (Sexton and
Laake 2009) proposed a bootstrap-of-little-bags approach to
estimate the variance of functions learned from bagged en-
sembles, and Athey et al. proved the consistency of this vari-
ance estimate (Athey, Tibshirani, and Wager 2017). While
bagging was originally introduced to this short boosted tree
model to reduce the variance of the learned shape functions,
in this paper, bagging has additional importance, as we can
use the bootstrap-of-little-bags variance estimate to estimate
the variance of hj(xj): feature xj’s contribution to the pre-
diction.

Using Sexton and Laake’s bootstrap-of-little bags ap-
proach, given k = 1, . . . ,K outer folds, each of which has
l = 1, . . . , L inner folds, we first take the average of hj(xj)
across inner folds of the same outer folds, yielding K av-
erages. Then we take the variance of these K averages as
our variance estimate for one model. The variance estimate
for the difference between two models is then a sum of the
individual variances and covariance, also estimated using
bootstrap-of-little-bags.

It is important to note that this gives us pointwise confi-
dence intervals, i.e. confidence intervals at specific values of
xj e.g. race=African-American, age=50, etc., which is suf-
ficient for our goal of detecting specific feature values that
exhibit systematic differences between the risk score and ac-
tual outcome. We leave the construction of uniform confi-
dence intervals for future work.

Investigating Lending Club Loan Risk Scores
Figure 7 shows shape plots for four of the features used
in the loan default risk prediction model: Annual Income,
FICO Score, Interest Rate, and Loan Purpose. As in Fig-
ure 1, red lines show what was learned by the transparent
student model trained to mimic the lending model by train-
ing on scores predicted by that model, and green lines show
what a transparent model learned when training on the true
credit fault labels. Comparing the red and green lines helps
us understand what the black-box lending model learned,
and how it differs from what a model could have learned
from the true labels.

The black-box lending model probably ignores income
and loan purpose. Interestingly, the black-box lending
model appears to ignore Self-Reported Income (red), even
though a model trained on the true labels shows a strong
effect for income on risk (green). We suspect the lending
model may ignore income because it is self-reported and
thus easy to fake.

In the last plot for the Loan Purpose term, we see that the
lending model probably also ignores the loan purpose (red),
but a model trained on the true labels (green) suggests that
purpose is a useful feature and that risk is highest for small
business loans, and least for loans taken out for weddings.
For the lending model we see a number of graphs like this
where the mimic model is essentially flat on a feature that
the model trained on the true labels finds useful, and suspect
that this is one way of determining which features are or are
not used by a black-box model.

The models agree and disagree on FICO. As for FICO
score, the models agree for low to intermediate FICO scores,
but disagree for scores around 800. A transparent model
trained on the true labels predicts that FICO score near 800
indicate very low risk, but the mimic model suggests that
there is little difference in risk between scores of 750 and
800. The black-box lending model appears to be a smooth,
simple function of FICO scores above 675 (and possibly be-
low 675, but the error bars are too large to be conclusive).

The models are qualitatively similar but quantitatively
different on interest rate. On interest rate, the mimic
model (red) suggests that the black-box lending model
places significantly more emphasis on interest rate than a
model trained on the true labels. Both models show a strong,
linear increase in risk with interest rate, but the slope is twice
as high on the mimic model.



Figure 4: Shape plots for eight features the Chicago Police Department claims are used to predict the risk score



Figure 5: Shape plots for eight features the Chicago PoliceDepartment claims are not used to predict the risk score

Figure 6: Structured Bagging Setup
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Figure 7: Shape plots for four features for loan default prediction

Sc
or

e
an

d
O

ut
co

m
e

Sc
or

e
−

O
ut

co
m

e

Figure 8: Additional features in recidivism risk data. See caption in Figure 1.


