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Abstract

This paper intends to address an issue in RL that when agents
possessing varying capabilities, most resources may be ac-
quired by stronger agents, leaving the weaker ones “starving”.
We introduce a simple method to train non-greedy agents
in multi-agent reinforcement learning scenarios with nearly
no extra cost. Our model can achieve the following goals in
designing the non-greedy agent: non-homogeneous equality,
only need local information, cost-effective, generalizable and
configurable. We propose the idea of diminishing reward that
makes the agent feel less satisfied for consecutive rewards ob-
tained. This idea allows the agents to behave less greedy with-
out the need to explicitly coding any ethical pattern nor mon-
itor other agents’ status. Given our framework, resources can
be distributed more equally without running the risk of reach-
ing homogeneous equality. We designed two games, Gath-
ering Game and Hunter Prey to evaluate the quality of the
model.

1 Introduction
Multi-agent reinforcement learning normally assumes that
all agents are equally capable, which seems to be unrealistic
as in real applications it is not guaranteed all the agents are
designed under the same framework nor trained using the
same data. Given agents with different levels of capability,
one serious concern is that the stronger agents may dominate
too many resources for the weaker ones to survive. For in-
stance, considering heavy traffic with autonomous cars, the
ones with faster decision making process and better accel-
eration devices may overtake the others and make the less-
capable vehicle stuck or barely move in this situation. In-
stead of designing a specific protocol to solve the problem,
we aim to provide a low-cost and general solution to allevi-
ate the harm to the weaker agents in such competitive envi-
ronments.

The most relevant work might be the one proposed by
(Lerer and Peysakhovich 2017) which modifies the reward
function for each agent as the sum of the rewards from all
agents. In this case, the agents can optimize the global re-
ward instead of its individual rewards to avoid damaging the
overall rewards through acting greedily. However, to deploy
such solution, one needs to assume the individual rewards
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are visible to all agents, which might be very costly to im-
plement in practice. Our design aims at making the stronger
agents less greedy given sufficient resources (or rewards) are
available, thus the chance of the ’starving weaker agents’ be-
comes smaller. It does not demand each agent to be omni-
science, as only local reward information is needed to real-
ize this strategy. In addition to that, we also point out that
we need to avoid homogeneous equality, meaning that the
resources are equally distributed across agents regardless of
their capability. Our goal is to ensure the stronger agents still
have higher chance to earn more resources, while at the same
time be less greedy to leave some resources for the weaker
ones. Below we summarize our design criteria:

• Non-greedy: stronger agents try not to grasp as much re-
sources as they can and leave some for the weaker ones,
given that resources are sufficient.

• Non-homogeneous equality: Stronger agents can still ob-
tain more resources than the weaker ones.

• No global observability required: Agents do not have to
know other agents’ internal information, such as the re-
wards received.

• Cost-effective: simple and computationally efficient.

• Universal and configurable: Applicable to most re-
inforcement learning models, and the levels of non-
greediness can be easily configured.

Our solution integrates the idea of Diminishing Marginal
Utility in economics into a reward shaping from (Ng,
Harada, and Russell ). Diminishing Marginal Utility states
that the marginal utility of each homogenous unit decreases
as the supply of units increases and vice versa. Reward shap-
ing is a method that aims to accelerate the convergence rate
by transforming agents’ reward function.

The proposed method works as below. Given the normal
design of a reinforcement learning (RL) agent, apply an re-
ward transformation function to the regular reward func-
tion. The adjusted rewards acts as the mental reward that
the agents believed it has obtained. It takes the output of the
original reward function and the historic information of the
reward received by the agent as an input, and output the di-
minished reward as the mental reward. Note that the adjust-
ment function (as shown in Figure 1)can be easily general-
ized without having to design a customized function for ev-



ery scenarios. The intuition is simple: our diminishing func-
tion allows the agent to feel that ’less reward’ can be earned
for consecutive success. Thus it would be less attractive for
agents to pursue additional rewards within a short period,
which leads to the non-greedy behavior.

Finally, we conducted experiments on two simulated sce-
narios Gathering Game, Hunter-Prey to verify whether the
trained non-greedy agents indeed can satisfy the above
design criteria. We have released the source code here:
https://github.com/petwill/diminishing-reward-shaping.

2 Preliminaries
2.1 Reinforcement Learning
Reinforcement learning (RL) is an effective approach to
solve real-world decision-making problems, which is usu-
ally represented by a Markov Decision Process (MDP). The
MDP is parameterized by a tuple (S,A, T ,R, γ), where
S is a set of states, A is a set of actions, T is a transi-
tion function T (s, a, s′) indicating the transition probabil-
ity of P (s′|s, a), R is the reward function that returns a
number to encourage/prohibit action a under state s, and
we use discount factor γ ∈ [0, 1) to represent different in-
fluences of long-term and short-term reward. To derive a
policy π(a|s) that optimize the discount cumulative reward∑∞

t=0 γ
tR(st, at), an elaborate way is to utilize SARSA

(Rummery and Niranjan 1994), where an estimator of ex-
pected future discounted reward Q(s, a) is obtained based
on the concept of Bellman’s equation (Watkins and Dayan
1992):

Q(st, at) =Q(st, at)+

α[r + γmax
a′

Q(st+1, a
′)−Q(st, at)] (1)

where α ∈ [0, 1) is the learning rate. The optimal policy
indicated by SARSA is to select the state-action pair (s, a)
that has the maximal Q-value Q(s, a).

Deep Q-learning Network (Mnih et al. 2015) has been
a very popular model in reinforcement learning for Q-
value approximation. At every iteration t, the model use
the experience tuple (s, a, r, s′) from replay buffer to update
DQN model parameters θ to minimize the loss Lt(θt) =

E(s,a,r,s′)[(r + γmaxa′ Q(s′, a′, θ̂t) − Q(s, a, θt))
2)]. The

replay buffer is a queue only containing the set of the latest
experience tuple, and the θ̂t is the parameters of the target
network at time t.

2.2 Multi-agent Reinforcement Learning
Multi-agent reinforcement learning (MARL) is related to
a multi-agent system with several autonomous, interacting
agents sharing a common environment and each agent have
to maximize their individual rewards (Busoniu, Babuška,
and De Schutter 2010).

The notation of a multi-agent system with n agents is rep-
resented as a tuple (n,S,A1, ...,An,R1, ...,Rn,P) where
S is the set of states,Ai is the action set of agent i,Ri is the
reward of agent i and P is the state transition function. The
reward functionRi : S ×A1 × · ×An 7→ R maps the joint
action a = (a1, ..., an) to an immediate reward to agent i.

The transition function P : S×A1×·×An 7→ ∆(S) deter-
mines the probabilistic state change to the next state st+1.

Q-learning algorithm can applied to multi-agent system
by making each agent i learn an independently optimal Q-
value function with its own Q-network. However, there are
some challenges in MARL (Matignon, Laurent, and Le Fort-
Piat 2012; Busoniu, Babuška, and De Schutter 2010). Q-
learning algorithm estimates values of every possible dis-
crete state and state-action pair, which can lead to expo-
nential computational complexity. The case also applies in
every agent since each agent has its own variables to the
joint environment. This makes the suffering of dimensional-
ity of MARL even severe than single-agent scenario. Also,
non-stationarity is an issue in multi-agent system since all
the agents are learning simultaneously under the same en-
vironment. Thus, each agent faces a moving-target learning
problem: the optimal policy changes if other agents’ policies
change.

2.3 Reward Shaping
Most value-based reinforcement learning algorithms are
rather slow because they need to explore state-action pairs
uniformly at random in the early stage. Only going through
enough explorations and then updated by associated rewards
have been observed can the agent start to exploit the experi-
ence by biasing its action selection towards what it estimates
to be good.

Reward shaping (Ng, Harada, and Russell ), motivated
from behavioral psychology , is an efficient way of including
prior knowledge in the learning problems so as to enhance
the convergence rate. Additional intermediate rewards are
provided to enrich a sparse base reward signal, giving the
agent with useful gradient information. Reward shaping can
be easily incorporated with a variety of resources such as
demonstration and verbal feedback. The shaping reward H
is usually integrated with the original reward in the form of
addition:
R
′
(st, at, st+1) = R(st, at, st+1) +H(st, at, st+1). (2)

To ensure policy invariance, potential-based shaping method
is proposed. Rewards are modified to the following form

R
′
(st, at, st+1) = R(st, at)− Φ(st) + γΦ(st+1). (3)

The potential functions Φ encodes how good it is to be in a
state. The relation of the value functions before and after the
transformation is just a constant shift.

Q
′
(st, at) = Q(st, at)− Φ(st). (4)

3 Diminishing Reward Shaping
Here we adopt the idea of diminishing reward shaping in
training an RL agent. That is, each agent maintains a mental-
reward that is different from the actual rewards obtained. To
determine the mental-reward, the agent has to maintain the
information It about the total reward received in the pastW
time frames.

Thus, we add one more variable to the state representation
s
′

t as:

s
′

t = st ∪ It. (5)



Note that all agents observe the same state st, but It is agent-
specific information and will not be shared with any other
agents. With the adjustment function F (Figure 1) and the
original reward function R, the shaped reward function R′

becomes

R
′
(st, at, It) = R(st, at)×F(It) (6)

F(It) =

W∑
i=1

R(st−i, at−i) (7)

Figure 1: The possible form of the adjustment function F .
Exponential denotes the function y = e

−x
τ .

Figure 2: An illustration of our method withW = 3.

Note that the major difference between our shaping func-
tion and the original reward shaping is that the rewards
are adjusted through multiplication, instead of addition. As
will be shown in our second experiments, diminishing re-
ward shaping can be combined with the original shaping-
by-addition to yield a more satisfiable outcome. Finally, re-
ward transformation shall be applied to all agents, regardless
whether they are strong or weak. However, weaker agents
are less affected by the shaping since they probably do not
obtain reward frequently.

4 Experiments
4.1 Game Setup
We conducted two map-wandering experiments to evaluate
the proposed model. Both experiments are implemented in a

2D grid-world. Agents can observe the whole map, includ-
ing all other agents’ positions. However, the accumulated re-
wards for each agent is not known to others. All agents start
the game from corner grids. There are five agent-centered
actions: step forward, step backward, step left, step right,
and stand still. Each episode lasts for 1000 rounds, and in
each round (time frame), faster agents can make more moves
than slower ones, which is where the game introduces in-
equality. In a two-player game, stronger agents can move
two steps at a time while the weaker agent can move only
one step. Likewise, the strongest agent can move three con-
secutive steps while the weakest one can only move one step
in a three-player game. Below we describe the design of the
games.

Gathering Game This game is modified from the Gath-
ering Game mentioned in (Leibo et al. 2017). In this game,
several agents move on a 5× 5 grids table. Apples may only
appear in some central grids to increase interaction between
agents. Apples re-spawn after Napple time frames, which is
5 by default. When an agent collects an apple, one reward is
given.W is set to 5 in Gathering Game.

Hunter Prey This is a popular game in reinforcement
learning scenarios (Tan 1993; Doya et al. 2002). Basically,
multiple agents, also known as hunters, chase over a sin-
gle prey that could appear anywhere on the map. The prey
reoccurs only when the previous one is caught. To acceler-
ate the training procedure, state-based reward shaping is ap-
plied, which allows us to reward the approaching behavior
and punish the opposite. Let the position of the prey and the
agent be (xprey, yprey) and (xt, yt), we have the following
equation.

R
′
(st,at, It) =

(R(st, at)− Φ(st) + γΦ(st+1))×F(It) (8)

Φ(st) =
1

| xprey − xt | + | yprey − yt |
(9)

This is an example to show how the diminishing reward can
be combined with the original reward shaping function. W
is set to 10 in Hunter Prey.

Simulation The i-th agent stores a function Qi : Oi ×
Ai → R represented by deep Q-network (DQN). Note that
each learning agent is “independent” of other agents and re-
gards other agents as part of the environment. The state ob-
served by each agent is different, denoted as oi = O(s, i).
For convenience, we use Qi(s, a) = Qi(O(s, i), a). During
the training, epsilon-greedy policy is used for exploration,
with epsilon ε decaying linearly over time (from 1 to 0.1).
The i-th agent’s policy has the following form.

πi(s) =

{
arg maxa∈Ai Qi(s, a) with probability 1 - ε
U(Ai) with probabilty ε

(10)
U(Ai) denotes a sample from the uniform distribution over
Ai. The neural networks have two hidden layers with 32
units, interleaved with a rectified linear layer that project to
the output layer with 5 units, one for each action. The default
per-time-step discount rate is 0.99.



Evaluation Metrics Note that here we would like to eval-
uate how many resources are obtained (the actual reward),
not the mental-reward of each agent. Since we want to
achieve non-greedy in a global sense. We adopt entropy as
our measure of equality. Let Atotal denote the sum of re-
sources obtained by all agents and Ai be the total reward
agent i received in a single game. Entropy is calculated as
follow

−
∑
i

Ai

Atotal
× log2(

Ai

Atotal
). (11)

However, measuring only entropy can be deceiving. If the
goal is to simply maximize the entropy, a trivial optimal so-
lution can be achieved by letting each agent take equal num-
ber of resources. It is not desirable since every agent should
still attempt to maximize its own reward sum. As a result,
resource consumption rate has to be evaluated as well. The
total resources obtained by all agents is taken into consid-
eration as the second metric. Since resources only re-spawn
after the previous one is consumed, the sum of resources
Atotal after diminishing reward shaping is applied tends to
be lower.

4.2 Results
Non-greedy and Configurability Three shaping function
F below are adopted in our experiments.

• Exponential

R
′
(st, at, It) = R(st, at)× e−

It
τ (12)

• Step function

R
′
(st, at, It) =

{
R(st, at) x ≤ τ
0 τ ≤ x (13)

• Negative step function

R
′
(st, at, It) =

{
R(st, at) x ≤ τ
−1 τ ≤ x (14)

Experiment results are shown in Figure 3. We notice
significant improvement on the resources obtained by the
weaker agent (and hence higher entropy). Note that except
the exponential diminishing function, increasing τ can gen-
erally make stronger agent less greedy. Exponential dimin-
ishing seems to be not as configurable as others. It’s prob-
ably because adjusting τ in such function is less straight-
forward.To sum up, the step function is recommended over
other functions since it can tolerate a larger range of τ value.

Non-homogeneous Equality As mentioned previously, it
is undesirable to achieve homogeneous equality that re-
sources are equally distributed. To show that our method
achieves non-homogeneous equality, the difference between
agents’ capabilities are reduced but preserved. In order to
show that, we conducted the following experiments (Figure
5). It is shown that the domination is alleviated only when

resources are abundant (e.g. 1/5). That is, stronger agents
only act non-greedily when it is “satisfied”. On the other
hand, when the resources are scarce (e.g. spawn rate 1/20),
the diminishing reward cannot significantly alter the behav-
ior of the agent as the stronger ones still have higher chance
to obtain the resources, which is important in our design.

Extending to 3 agents To show that our method can be
easily generalized, experiments to environments with three
agents are conducted (see Figure 4). Similar results are ob-
tained.

5 Related Work
Machine ethics (Anderson and Anderson 2011) is a field that
dedicate to make machines follow ethical principles, or to
resolve ethical dilemmas. Some works propose frameworks
with machine learning and reinforcement learning to make
ethical decision (Abel, MacGlashan, and Littman 2016;
Arnold, Kasenberg, and Scheutz 2017). Since real-world
scenarios involve multiple agents, many research have been
conducted on multi-agent systems to better approximate in-
teractions in our daily life. The natural interaction between
multiple agents can be cooperative or competitive. Many
studies focus on how to make agents behave in cooperative
manners through improving learning algorithms (Lauer and
Riedmiller 2000; Matignon, Laurent, and Le Fort-Piat 2007)
and model design (Gupta, Egorov, and Kochenderfer 2017).
(Leibo et al. 2017; Lerer and Peysakhovich 2017) perform
detailed observation about whether agents behave coopera-
tively or greedily under a variety of social dilemmas, and
our work provides a solution to achieve fair resource distri-
bution under similar situations. The followings are previous
works that aim to design cooperative multi-agent systems
and multi-agent RL with social dilemmas.

5.1 Machine Ethics
Making artificial agents learn about ethical objective func-
tion while making decisions is challenging. (Armstrong
2015) deals with the problem by utilizing Bayesian learn-
ing to update the true ethical objective function. (Abel, Mac-
Glashan, and Littman 2016) adapts the same concept on util-
ity function, which considers the ethical learning problem
as learning an utility function as the part of hidden states of
Partially Observable Markov Desicion Process (POMDP).

(Russell, Dewey, and Tegmark 2015) suggests that Inverse
Reinforcement Learning (IRL) is possibly viable in machine
ethic issues since a system infers preferences of other ratio-
nal or nearly rational actors by observing their actions. In-
stead of formulating rules, laws or utility functions in the
beginning of the training process, the system could learn
from modeled what other agents trying to do and what be-
haviors are being observed. However, (Arnold, Kasenberg,
and Scheutz 2017) claims that systems that only applies
IRL is insufficient for agents to infer norms. Consequently,
they propose an approach to combine RL and logical repre-
sentations: the agents maximize their reward function over
the state-action pairs and meanwhile maximally satisfy the
norms.



Figure 3: Experiment results for 2-player Gathering Game and Hunter Prey. For two near-by bars, the left one denotes the
weaker agent while the one on the right is the stronger agent. Different functions applied are distinguished by color.

Figure 4: Experiment results for 3-player Gathering Game.

5.2 Cooperative Multi-agent System
In multi-agent systems, a agent’s policy depends on the ac-
tions chosen by the team. Thus, an agent would be punished
even if it makes the optimal decision since bad decisions

are made by teammates. In (Lauer and Riedmiller 2000),
they design Distributed Q-Learning algorithm to make opti-
mal agents neglect the penalties from non-coordinate agents
in the update procedure. However, an issue is that the op-



Figure 5: Results on a two-player Gathering Game with dif-
ferent resource spawn rate. Lower spawn rate means that re-
sources are more scarce. The shaping function used in this
experiment is a step function with τ = 6. For every two ad-
jacent bars, the left one denotes resources consumed by the
stronger agent while the right bar represented the weaker
agent.

timistic agents do not manage to achieve the coordination
between multiple joint optimal actions. (Matignon, Laurent,
and Le Fort-Piat 2007) designs the Hysteretic Q-learning
algorithm to solve the coordination issue. Both approaches
make agents to improve collective reward.

In (Gupta, Egorov, and Kochenderfer 2017), they focus
on the Parameter Sharing method. The approach indirectly
achieves cooperation behavior through sharing policy pa-
rameters. However, this approach requires agents to be ho-
mogeneous and it is hard to implement in real-world scenar-
ios.

5.3 Multi-agent Social Dilemma
In social dilemmas, individuals tempt to increase their pay-
offs in the short run at a cost to the long run total wel-
fare. Several algorithms and analyses have been developed
for the two-player zero-sum case (Littman 1994), but the
general-sum case is significantly challenging (Zinkevich,
Greenwald, and Littman 2006). Most algorithms require to
track several different potential equilibrium for each agent
(Hu, Wellman, and others 1998; Greenwald, Hall, and Ser-
rano 2003), or to pose restrictions to agents to simplify the
problem (Littman 2001). (Leibo et al. 2017) aims to answer
“what social effects emerge when each agent uses a partic-
ular learning rule?”. Their purpose is to study and charac-
terize the resulting learning dynamics, rather than designing
new learning algorithms. Analysis is also studied on the dy-
namics of policies learned by multiple self-interested inde-
pendent learning agents using its own deep Q network. They
also characterize how the learned behavior in each domain
changes as a function of environmental factors.

(Lerer and Peysakhovich 2017) proposes a method us-
ing modern reinforcement learning to generalize success-
ful strategy in Prisoner’s Dilemma: tit-for-tat. The learning
agents get rewards from both their own payoff and the re-
wards other agents receive. They both show that agents can
maintain cooperation in complex environments. However, it
only works when the zero-sum games is considered and fails
in positive-sum interaction. Moreover, the reward for the
learning agent does not make much sense in real-world sit-
uations because getting other agents’ information costs too
much.

6 Conclusion
One key difference between our diminishing and reward
shaping is that the regular reward shaping is proposed to
improve the convergence rate, while diminishing reward is
proposed to make sure reinforcement learners not only max-
imize their individual rewards but also behave in a non-
greedy manner. Our method involves using a sliding win-
dow to collect historic information of rewards and this can
be adopted to most reinforcement algorithms.

Future works include finding a better theoretical justifi-
cation for the convergence of the model, as well as provid-
ing more empirical justification for a variety of diminishing
functions.
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