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Recent years have seen the widespread implementation of
data-driven algorithms making decisions in increasingly
high-stakes domains, such as finance, healthcare, transporta-
tion and public safety. Using novel ML techniques, these al-
gorithms are able to process massive amounts of data and
make highly accurate predictions; however, their inherent
complexity makes it increasingly difficult for humans to un-
derstand why certain decisions were made. Indeed, these al-
gorithms are black-box decision makers: their underlying
decision processes are either hidden from human scrutiny
by proprietary law, or (as is often the case) their inner work-
ings are so complicated that even their own designers will
be hard-pressed to explain the underlying reasoning behind
their decision making processes. By obfuscating their func-
tion, data-driven classifiers run the risk of exposing human
stakeholders to risks. These may include incorrect decisions
(e.g. a loan application that was wrongly rejected due to
system error), information leaks (e.g. an algorithm inadver-
tently uses information it should not have used), or discrimi-
nation (e.g. biased decisions against certain ethnic or gender
groups). Government bodies and regulatory authorities have
recently begun calling for algorithmic transparency: provid-
ing human-interpretable explanations of the underlying rea-
soning behind large-scale decision making algorithms. My
thesis research will be concerned with an axiomatic analysis
of automatically generated explanations of such classifiers.
Especially, I’m interested in how to decide which explana-
tion of a decision to trust given that there are many, poten-
tially conflicting, possible explanations for any given deci-
sion.

Work done so far
In our initial work (J. Sliwinski 2017), we investigated in-
fluence measures: these are functions that, given a dataset,
assign a value to every feature; this value should roughly
correspond to the feature’s importance in affecting the clas-
sification outcome for individual datapoints. We identified a
set of axioms that any reasonable influence measure should
satisfy. Given the space constraints, here only a very brief
overview of the what these axioms look like. Some where
concerned with geometric manipulation of the data set i.e.
behaviour of the measure under rotation or shifting of the
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data points, but we also considered axioms concerning con-
tinuity and a form of monotonicity. From these axioms, we
derived a class of influence measures, dubbed monotone in-
fluence measures (MIM), which uniquely satisfied these ax-
ioms. I significantly contributed to this part of our work.
Moreover, we showed that MIM can be interpreted as the
optimal solution to a natural optimization problem. Unlike
most existing influence measures in the literature, we as-
sumed neither knowledge of the underlying decision making
algorithm, nor of its behavior on points outside the dataset.
Indeed, some methodologies are heavily reliant on having
access to counterfactual information: what would the classi-
fier have done if some features were changed? This may be
a strong assumption in some cases, as it assumes not only
access to the classifier, but also the potential ability to use it
on nonsensical data points1. Further, I conducted an initial
analysis of some existing measures based on our axioms,
showing which of the axioms are satisfied by existing mea-
sures and how they could be improved accordingly. Finally,
we showed that despite our rather limiting conceptual frame-
work, MIM does surprisingly well on a sparse image dataset,
and provides an interesting analysis of a recidivism dataset.
We showed that the outputs of MIM are comparable to those
of other measures, and provide interpretable results.

Related Work
Algorithmic transparency has been debated and called for by
government bodies (Hollande 2016; Smith, Patil, and Muoz
2016), the legal community (Roggensack and Abrahamson
2016; Suzor 2015), and the media (Hofman, Sharma, and
Watts 2017; Angwin et al. 2016). The AI and ML research
community is part of the conversation: several ongoing re-
search efforts are informing the design of explainable AI
systems (e.g. (Kroll et al. 2017; Zeng, Ustun, and Rudin
2017)), as well as tools that explain the behavior of exist-
ing black-box systems (see (Weller 2017) for an overview);
our initial work focuses on the latter.

Existing results closely related to our initial work are from
Datta et al.. They axiomatically characterize an influence
measure for datasets; however, in their work influence is in-

1For example, if the dataset consists of medical records of men
and women, the classifier might need to answer how it would han-
dle pregnant men



terpreted as a global measure (e.g., what importance had age
for all decisions as a whole); we focused on feature impor-
tance for individual datapoints. Further, it has been shown by
Datta, Sen, and Zick that the measure proposed by Datta et
al. outputs undesirable values (e.g. zero influence) in many
real instances; this is due to the fact that the Datta et al.
measure relies on the existence of potentially counterfactual
data: datapoints that differ from one another by only a single
feature. This becomes especially problematic in situations
with many features or sparse data. A data-based influence
measure relying on a potential like approach has been pro-
posed by Baehrens et al.. However, we could demonstrate
that their approach fails to satisfy reasonable properties even
on basic datasets.

Another stream of research assumes access to the clas-
sifier, which allows to query classifiactions for additional
datapoints. Datta, Sen, and Zick use an axiomatically jus-
tified approach based on an economic paradigm of fairness
to measure influence, called QII; briefly, QII perturbs fea-
ture values and observes the effect this has on the classifi-
cation outcome. Another line of work using black-box ac-
cess (Ribeiro, Singh, and Guestrin 2016) uses queries to the
classifier in a local region near the point of interest in or-
der to measure influence. Adler et al. equate the influence
of a given feature i with the ability to infer i’s value from
the rest of features, after it has been obscured; this idea
is the basis for a framework for auditing black-box mod-
els based on statistical analysis. However, this approach as-
sumes that one can make predictions on a dataset with some
features removed. Finally, Sundararajan, Taly, and Yan pro-
vide a framework for explaining the behavior of black-box
systems using a notion of economic fair allocation; how-
ever, their analysis assumes that the underlying classifier is a
neural network. MIM assumes neither a specific algorithmic
framework, nor access to counterfactual data. This results in
a more generic, albeit less powerful, explanatory framework.

Plans for the future
Clearly this is just a initial starting point on which I want
to build my Ph.D. research. We are planning on pursuing
the following directions. First, axiomatic approaches for in-
fluence measurement are common in economic domains.
Of particular note are axiomatic approaches in cooperative
game theory (Shapley 1953; Banzhaf 1965); we have started
exploring the relation of MIM to game-theoretic influence,
but there is much more potential in applying game-theoretic
concepts in this new domain.

Further, we currently only consider binary classifications,
a generalization into a multi class our even regression do-
main is desirable and far from trivial. Besides the gener-
alization of our axioms it also requires a discussion what
’closeness’ means in those situations and what accounts as
positive or negative influence. Another major limitation of
our current work is that it only focuses on on single feature
influence and largely ignores synergistic effects between
features. Here existing works on coalition formation in co-
operative game theory might help us to obtain further in-
sights. Nevertheless, to axiomatize the pairwise interactions
between features would be major theoretical challenge.

Finally, these potential new measures would surely be
more involved, which makes them harder to understand for
humans. The study of this trade-off between understandabil-
ity and explanatory power is another question we would like
to further analyse.
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