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Abstract

Classical linear/shallow learning is relatively easy to analyze
and understand, but the power of deep learning is often desi-
rable. I am developing a hybrid approach in order to obtain
learning algorithms that are both trustworthy and accurate.
My research has mostly focused on learning from corrupted
or inconsistent training data (‘agnostic learning’). Recently,
1, as well as independent researchers, have found these same
techniques could help make algorithms more fair.

Learning algorithms are primarily evaluated by how much
time they take to run, and by the accuracy of their resulting
decisions. By these criteria, deep learning has largely sur-
passed classical methods such as SVM and kernel methods.
However, as algorithms are used for more critical and sensi-
tive decisions — like whether a drug should be administered
to a patient, or a loan applicant should be approved, or an au-
tonomous vehicle should stop for pedestrians — we desire
properties such as the following:

e resilience to corrupted or inconsistent training data,
e robustness to adversarial manipulation of test data, and

e fairness, accountability, and/or transparency of the re-
sulting decisions.

I consider a learning algorithm “trustworthy” if it has these
properties'. The first two properties involve adversarial re-
actions to the algorithm which may invalidate the initial trai-
ning assumptions; the last involves unforeseen consequen-
ces of using the algorithm. These properties can’t be ensured
by treating the algorithm as a ‘black box’ and observing its
performance on more data. We gain trust in the algorithm by
understanding and analyzing it.

Assessing learning algorithms in terms of trustworthiness,
along the traditional criteria of speed and accuracy, establis-
hes a tradeoff between simplicity and power. Classical li-
near/shallow learning tends to be more trustworthy but slo-
wer or less accurate. Deep learning is relatively opaque and
complex, despite a rapidly developing theory. In the context
of the first property (“resilience to corrupted or inconsistent
training data”), also known as agnostic learning, the concep-
tual simplicity/power tradeoff is quantitatively formulated

'T am not entirely attached to this terminology. As an alterna-
tive, in a forthcoming talk at NIPS, Moritz Hardt collectively refers
to such properties as “safety beyond security”.

and studied. The members of my thesis committee — Avrim
Blum, Maria-Florina Balcan, Geoffrey Gordon, and Varun
Kanade — are experts in this field. The central problem is
called ‘agnostically learning halfspaces” — learning, from
corrupted or inconsistent training data, a classifier which is
as accurate as the best linear classifier. Even if there is a
linear classifier which is nearly consistent with the data, it
may be computationally intractable (i.e. NP-hard) to actually
find it. Using nonlinear classifiers (a technique called ‘im-
proper learning’) can circumvent this computational intrac-
tability, but may require an overwhelming amount of data,
or may introduce other computational difficulties. To make
substantial progress in agnostic learning, we need to figure
out how to utilize nonlinear classifiers without a concomi-
tant explosion in complexity.

For more background on these tradeoffs, especially the
tradeoff between linear and nonlinear classifiers in the con-
text of agnostic learning, see my full thesis proposal (Kaul
2016). Here, I will briefly highlight my progress on taming
these tradeoffs, and speculate on its relevance to other as-
pects of trustworthiness, particularly fairness.

Depth without distress

My thesis features a new learning algorithm, called the se-
quence of averages (SoA), which returns a new kind of clas-
sifier, called smooth lists of halfspaces. They are both just
a few lines of code (see the figure below). Though they are
deep, they eschew much of the complexity of existing ap-
proaches. Smooth lists of halfspaces are nonlinear, but do
not perform intermediate feature extraction (mapping the in-
put vector to another vector). SoA is iterative, but does not
involve parameters optimized by backpropagation.

Due to their simplicity, the classifier and algorithm have
useful properties which aren’t (provably) shared by their fo-
rebears. Smooth lists of halfspaces do not use more data (in
the worst case) than linear classifiers, as quantified by Rade-
macher complexity bounds ((Kaul 2017) theorems 1 and 2).
This alleviates concerns about overfitting that usually arise
with improper learning. Though SoA does not update pa-
rameters like a typical iterative algorithm, it can be analy-
zed as a concrete dynamical system. Using techniques from
this area, particularly the stable manifold theorem, we have
shown the algorithm (or at least an arbitrarily minor smoo-
thing thereof) doesn’t get prematurely stuck: it can always
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Figure 1: The learning algorithm (left) operates upon data {x;, y; }, for T iterations, and computes a sequence of averages.
It uses a sequence of positive step sizes {3; }7_;. On each iteration, it computes, rescales (by Euclidean norm ||-||), and stores
the average of all the data. It reduces the weight of data having high inner product with the average. The weight reduction
corresponds to a passing probability in the smooth list of halfspaces (right), which operates upon an input x. A stored average
wy is used to classify an input if they have high inner product; otherwise, the input is passed to the next average.

monotonically improve the classifier ((Kaul 2017) theorem
3). Similar convergence proofs for nonconvex optimization
algorithms require much more stringent assumptions about
the underlying data or objective (Lee et al. 2016).

Nonlinear smooth lists of halfspaces grant the algorithm
just a bit of flexibility beyond linear classifiers. Neverthe-
less, it is enough to experimentally achieve state-of-the-art
results on various problems originating in computational le-
arning theory. These involve fitting boolean functions cal-
led juntas, including the notoriously challenging parity (aka
‘XOR’) function. These results are evidence that SoA avoids
the typical compromises associated with nonlinear classi-
fiers.

In future work, we hope to exhibit data which may be
(weakly) fit by SoA, but provably cannot be fit by any effi-
cient linear classifier. This would show that SoA is strictly
more powerful than efficient linear classifiers. We also be-
lieve that replacing linear classifiers with smooth lists could
make them more robust to adversarial manipulation of test
data. Finally, we hope our techniques may be used to help
make algorithms more fair, as described in the next section.

Fairness and computation

Unlike speed or accuracy, there is no obvious definition
of fairness for a learning algorithm. Many definitions have
recently been proposed. Rather than converging to a sin-
gle ‘consensus’ definition, researchers are analyzing the re-
lationships among them, and examining the tradeoffs re-
quired to fulfill them. Many of these tradeoffs are surpri-
singly harsh, suggesting that simple notions of fairness can-
not coincide (Kleinberg, Mullainathan, and Raghavan 2016;
Chouldechova 2017). Similarly, an interesting connection is
developing between agnostic learning and fairness: two re-
cent works have demonstrated that simultaneously ensuring
fairness for many groups is algorithmically equivalent to ag-
nostic learning (Kearns et al. 2017; Hébert-Johnson et al.
2017). Considering the difficulty of agnostic learning, these
should be interpreted as further negative results.

I believe these results portend a deeper interplay between
computational learning theory and fairness. Techniques for
coping with corrupted or inconsistent data may help gua-
rantee fairness. Sacrificing simplicity in favor of power will
become even less defensible. This will affect not just the
techniques used to guarantee fairness, but also the notions
of fairness themselves. Useful definitions will have to strike

a balance between ethical/moral significance and computa-
tional feasibility.

My submission to AIES illustrates how lessons from com-
putational learning theory, and my thesis research in parti-
cular, may carry over to fairness (Kaul and Gordon 2017).
From an algorithmic perspective, directly optimizing outco-
mes (e.g. ‘accept’ or ‘reject’) is hard, so most learning al-
gorithms instead optimize corresponding real-valued quan-
tities (e.g. ‘high score’ or ‘low score’). I propose definitions
of equal opportunity in terms of such real-valued quantities.
I think these definitions are more ethically/morally signifi-
cant in addition to being computationally expedient. I show
that a linear classifier based on averaging — much like a
single step of the SoA algorithm above — fulfills these de-
finitions of equal opportunity more effectively than popular
classifiers such as SVM.

In future work, I hope to develop algorithms which gua-
rantee fairness to many groups, but avoid the aforementio-
ned difficulties encountered with other definitions.
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