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Abstract
In order for artificial agents to coordinate effectively with peo-
ple, they must act consistently with existing conventions (e.g.
how to navigate in traffic, which language to speak, or how
to coordinate with teammates). A group’s conventions can
be viewed as a choice of equilibrium in a coordination game.
We consider the problem of an agent learning a policy for a
coordination game in a simulated environment and then using
this policy when it enters an existing group. When there are
multiple possible conventions we show that learning a policy
via multi-agent reinforcement learning (MARL) is likely to
find policies which achieve high payoffs at training time but
fail to coordinate with the real group into which the agent
enters. We assume access to a small number of samples of be-
havior from the true convention and show that we can augment
the MARL objective to help it find policies consistent with
the real group’s convention. In three environments from the
literature - traffic, communication, and team coordination - we
observe that augmenting MARL with a small amount of imita-
tion learning greatly increases the probability that the strategy
found by MARL fits well with the existing social convention.
We show that this works even in an environment where stan-
dard training methods very rarely find the true convention of
the agent’s partners.

Introduction
A ubiquitous feature of social interaction is a need for indi-
viduals to coordinate (Lewis 1969; Shoham and Tennenholtz
1997). A common solution to the coordination problem is the
establishment of social conventions which control daily tasks
such as choosing which side of the road to drive on, who
should get right of way during walking, what counts as polite,
what language to speak, or how a team should apportion tasks.
If we seek to construct artificial agents that can coordinate
with humans, they must be able to act according to existing
conventions.

In game theory, Nash equilibria are strategies for all players
such that if everyone behaves according to them no individual
can improve their payoff by deviating. In game theoretic
models a convention is one of multiple possible equilibria
in a coordination game (Lewis 1969). Stated in these terms
our agent’s task is to construct a policy that does well when
paired with the equilibrium being played by existing agents.
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There has been great recent progress in constructing poli-
cies that can do well in both single and multi-agent environ-
ments using deep reinforcement learning (Mnih et al. 2015;
Silver et al. 2017). Deep RL methods typically require orders
of magnitude more experience in an environment to learn
good policies than humans (Lake et al. 2017), so agents are
typically trained in simulation before being deployed onto the
real task. For single-agent tasks such as robotics, simulation
consists of a simulated model of the environment such as
MuJoCo (Todorov, Erez, and Tassa 2012).

In zero-sum two-player environments (e.g. Go), it is the
policy of the other player that is simulated during training.
Typically, policies for both players are trained simultaneously
or iteratively, in a process called self-play. Self-play produces
successful policies because if self-play converges then it con-
verges to an equilibrium of the game (Fudenberg and Levine
1998) and in two-player, zero-sum games all equilibria are
minimax/maximin strategies (von Neumann 1928). Thus, a
fully converged strategy is guaranteed to be unexploitable for
the task of interest (e.g. playing Go with a human champion).

Constructing agents that can cooperate and coordinate
with each other to achieve goals (e.g. work together as team
to finish a task) has been a long running topic in multi-
agent reinforcement learning (MARL) research (Walker and
Wooldridge 1995; Stone and Sutton 2001; Kapetanakis and
Kudenko 2002b; Lowe et al. 2017). However, this literature
typically assumes that the cooperating agents will continue
to interact with those with whom they have been co-trained
(this is sometimes referred to as “centralized training with
distributed execution”). In this case, if MARL converges, it
finds an equilibrium and since agents will play with the same
partners they trained with they will achieve these equilibrium
payoffs.

Unfortunately, agents are no longer guaranteed equilibrium
payoffs if there are multiple equilibria and agents must coor-
dinate with those they were not trained with (in other words,
when we remove the centralized training assumption). For
example, training self-driving cars in a virtual environment
may lead to agents that avoid crashing into each other during
training, but drive on the wrong side of the road relative to
the society they will enter.

In this paper we propose to give the agent access to a
small amount of observations of existing social behavior, i.e.
samples of (state, action) pairs from the test time environ-



ment. We focus on how such data, though it is not enough
to purely clone good policies, can be used in the training
process to learn the best response to the policies of the future
partners. Our key assumption is that the existing environment
already has some existing, stable, social conventions. Thus,
our assumption is that future partners will be playing some
equilibrium strategies. In simple environments, agents could
simply enumerate all possible equilibria and choose the one
most consistent with the data. However, in more complex
environments this becomes intractable. We propose to guide
self-play toward the correct equilibrium by training with a
joint MARL and behavioral cloning objective. We call this
method observationally augmented self-play (OSP).

We consider OSP in several multi-agent situations with
multiple conventions: a multi-agent traffic game (Sukhbaatar,
Fergus, and others 2016), a particle environment combining
navigation and communication (Mordatch and Abbeel 2017;
Lowe et al. 2017) and a Stag Hunt game where agents must
take risks to accomplish a joint goal (Peysakhovich and Lerer
2017). In each of these games we find that self-play can
converge to multiple, incompatible, conventions. We find
that OSP is able to learn correct conventions in these games
with a small amount of observational data. Our results in the
Markov Stag Hunt show that OSP can learn conventions it
observes even when those conventions are very unlikely to
be learned using MARL alone.

We do not claim that OSP is the ultimate approach to con-
structing agents that can learn social conventions. The success
of OSP depends on both the game and the type of objective
employed, thus an exploration of alternative algorithms is an
important direction for future work. Our key result is that the
combination of (a) a small number of samples from trajecto-
ries of a multi-agent game, and (b) knowledge that test time
agents are playing some equilibrium gives much stronger test
time performance than either component alone.

Related Work
OSP is related to existing work on adding reward shaping in
MARL (Kapetanakis and Kudenko 2002a; Devlin and Ku-
denko 2011). However the domain of interest differs slightly
as reward shaping is typically used to cause all agents in a
group to converge to a high-payoff equilibrium whereas we
are interested in using shaping to guide training to select the
correct test-time equilibrium.

Recent work has pointed out that strategies learned via a
single instance of independent MARL can overfit to other
agents’ policies during training (Lanctot et al. 2017). This
work differs from ours in that it suggests the training of a
single best response to a mixture of heterogeneous policies.
This increases the robustness of agent policies but does not
solve the problem of multiple, incompatible conventions that
we study here.

The approach of combining supervised learning from tra-
jectories with RL has been studied in the single agent case
(Hester et al. 2017). In that work the trajectories are expert
demonstrations and are used to guide RL to an optimal policy.
In this case supervision is used to speed up learning while
in our work the trajectories are used to select among many

possible optima (equilibria) which may be equivalent at train-
ing time but not at test time. However this literature explores
many methods for combining imitation learning and RL and
some of these techniques may be interesting to consider in
the multi-agent setting.

Conventions in Markov Games
A partially observed Markov gameG (Littman 1994) consists
of a set of players P = {1, . . . , N}, a set of states S, a
set of actions for every player Ai with the global set A =
×i∈PAi, a transition function τ : S × A → ∆S, a reward
function for each player that takes as input the current state
and actions Ri : S × A → R. Players have observation
functions Oi : S → Oi and can condition their behavior
on these observations. Markov policies for each player are
functions πi : Oi → Ai. Let Πi denote the set of all policies
available to a player and Π = ×i∈PΠi be the set of joint
policies.1

We use the standard notation π−i to denote the policy vec-
tor for all players other than i. A set of policies π ∈ Π and
a (possible random) initial state s0 ∈ S defines a (random)
trajectory of rewards for each player. We let the value func-
tion Vi(s, πi, π−i) denote the discounted expectation of this
trajectory. The best response starting at state s for player i to
π−i is BR(s, π−i) = argmaxπi∈Πi

Vi(s, πi, π−i). We let s0

be the (possibly random) initial state of the game.
There are many ways to extend the notion of a Nash equi-

librium to the case of stochastic games. We will consider the
Markov perfect best response. We denote by BR(π−i) the
policy (or policies) which is a best response starting at any
state and consider equilibria to be policies for each player π
such that each πi ∈ BR(π−i).2

We consider games with multiple, incompatible, conven-
tions. Formally we say that conventions (equilibrium pol-
icy sets) π and π′ are incompatible if the compound policy
(πi, π

′
−i) is not an equilibrium.

The goal of training is to compute a policy πi which is a
best response to the existing convention πtest−i . During train-
ing, the agent has access to the environment but receives only
a limited set of observations of πtest in the form of a set D
of state-action pairs sampled from πtest. This is summarized
in Figure 1.

We denote a generic element of D by d = (s, ak) which is
a (state, action) pair for agent k. Let Dj denote the subset of
D which includes actions for agent j.

The dataset D may be insufficient to identify a best re-
sponse to all possible policies πtest consistent with D. How-
ever, the set of equilibrium policy sets is typically much

1We consider only Markov policies in this work so that we can
work with individual state-action pairs, although our same approach
could be applied across observed trajectories to learn non-Markov
policies (i.e. policies conditioned on their full history).

2There are weaker notions, for example, requiring that policies
are best responses at every state reached during play. It is known
that Markov perfect equilibria are harder to find by learning (Fu-
denberg and Levine 1998) and it is interesting to consider whether
different kinds of choices (e.g. on-policy vs. off-policy learning) can
make stronger or weaker convergence guarantees. However, these
questions are outside the scope of this paper.



smaller than all possible policy sets. Therefore, if we as-
sume that all agents are minimizing regret then we must only
consider equilibrium policy sets consistent with D.

Given a game G and dataset D, a brute force approach to
learn a policy compatible with the conventions of the group
the agent will enter would be to compute the equilibrium π∗

of G that maximizes the likelihood of D. Formally this is
given by

π∗ ∈ argmaxπ
∑
i

∑
(s,a)∈Di

log(πi(s, a))

s.t. ∀i, πi ∈ BR(π−i).

This constrained optimization problem quickly becomes in-
tractable and we will instead try to find an equilibrium using
multi-agent learning, and use D to increase the probability
learning converges to it.

Figure 1: A graphical description of our problem. Our central
question is how to use observational data to make sure that
training converges to the same convention as the group which
our agent will enter.

Observationally Initialized Best Response
Dynamics
To get an intuition about how data can be used during train-
ing we will first study a learning rule where analytic results
are more easily obtained. We will begin with the simplest
multi-agent learning algorithm: best response dynamics in a
2 player Markov game where equilibria are in pure policies
and are incompatible.

In best response dynamics each player begins with a policy
initialized at π0

i . Players alternate updating their policy with
the best response πti = BR(πt−1

−i ). When there are multiple
best responses we assume there is a (non-randomized) tie-
breaking rule used to select one. Given an equilibrium A we
denote by ΠA the basin of attraction of A (the set of initial
states from which BR dynamics converge to A.)

A naive way to use the observed data is to force the policies
be consistent with D at each step of the best response dy-
namic by changing it at each states where it differs. However,
this can introduce new equilibria to the game.3

3For a simple example consider a game where 5 agents choose
an action A or B and receive reward equal to the number of other
agents whose actions match theirs. In this case there are equilibria
where all agents choose A or all agents choose B. If we restrict
one agent to always choose A we can introduce a new equilibrium
where 4 agents choose B and one agent chooses A.

In the context of reward shaping it is well known that the
way to avoid the introduction of new equilibria is to use po-
tential based reward shaping (Devlin and Kudenko 2011),
or, equivalently, use our information to only change the ini-
tialization of learning (Wiewiora 2003). We will follow this
advice and study observationally initialized best response
dynamics. We begin with a policy π0 chosen at random. How-
ever, for every player i and state-action pair (s, a) in the data
D we form π̄0 by setting the corresponding action of π0

i (s)
to a. We then perform best response dynamics from this new
initialization.

We will now discuss a class of games for which we can
guarantee that observationally initialized best response dy-
namics have a larger basin of attraction for the equilibrium
from which D was drawn relative to standard best response
dynamics. This class is a generalization of a commonly used
matrix game class: games with strategic complements (Bu-
low, Geanakoplos, and Klemperer 1985). For our purposes
strategic complements corresponds to assuming that one’s
partners behave more consistently with some convention then
one is also more incentivized to behave according to that
convention.4 In existing work strategic complements are de-
fined with respect to a single action rather than a Markov
policy. To generalize to Markov games we introduce a notion
of distance between policies:

Definition 1 (Policy Closeness) Given a player i and target
policy A we say that policy π is weakly closer to A than
policy π′ if on all states either π(s) = π′(s) or π(s) = A(s).
We denote this by π %A π′.

Policy closeness gives us a partial ordering on policies
which we use to generalize the idea of strategic complements.

Definition 2 (Markov Strategic Complements) A Markov
game exhibits Markov strategic complements if for any equi-
librium A = (A1, A2) we have that πi %Ai

π′i implies that
BR(πi) %A−i

BR(π′i).

Let DA be a dataset drawn from equilibrium A by sam-
pling states and their equilibrium actions. Let Π̄A(DA) be
the basin of attraction of A given observationally initialized
best response dynamics.

Theorem 1 If a game where best-response dynamics always
converge exhibits Markov strategic complements then for
any DA drawn from a equilibrium A ΠA ⊆ Π̄A(DA) and
there exists (s,Ai(s)) such that if (s,Ai(a)) ∈ DA then
ΠA ⊂ Π̄A(DA).

We relegate the proof to the Appendix. Roughly, it has two
steps: first, we show that if π0 is in the basin of attraction
of A then anything closer to A is also in the basin. Second,
we show that there is an initial state that is not in the basin

4In economic applications the notion of strategic complements
is utilized in production games and roughly corresponds either the
the idea of network effects (the more people use some product
the higher a consumer’s utility is from using that product) or a
joint monotonicity condition (if Firm X produces cars and firm
Y produces car washing materials if firm X produces more cars
then firm Y sees higher demand for car washing materials). See the
Supplement for a more formal discussion.



of attraction of best response dynamics but is in the basin of
attraction of observationally initialized best response dynam-
ics. Because initialization can increase the basin of attraction
without introducing any new equilibria the observed data
can strictly improve the probability that we learn a policy
consistent with the observed agents.

Observationally Augmented Self-Play
We wish to use the insights from initialization in environ-
ments where function approximation (e.g. with deep neural
networks) is required. However, if the policy is computed via
function approximation, it is not clear how to ‘initialize’ its
value at particular states. Specifically, the policy at the small
number of states in D can only be expected to generalize
if the approximation captures the regularities of the game,
which will only be true after some interaction in the environ-
ment. Therefore, we consider a procedure where consistency
with D is enforced during training and smoothly decays over
time.

We consider training with stochastic gradient descent using
a loss function which is a linear combination of the likelihood
of the data (a supervised objective) plus the policy gradient
estimator of the reward in the game (we denote by LPG
the negative of this quantity). Formally, each agent receives
rewards given by

LOSPi (πi, π−i) = LPG(πi | π−i) + λ
∑

(s,a)∈Di

log(πi(s, a))

with respect to the parameters θi of its policy.5
We optimize the joint objective using MARL. At any time

t when making an update to the parameters of each agent θi
we will take gradient steps of the form

∇OSPt (θi,D) = ∇PGt (θi) + λt∇sup(θi,D).

Where∇PG is our policy gradient and∇sup is the gradient
of the supervised objective at θi.6

Experiments
Our main analysis is experimental and we use three environ-
ments from the literature: traffic, language games, and risky
coordination. Our main results are:

Result 1 (Experiments 1,2,3) OSP greatly increases the
probability our agent learns a convention compatible with
test time agents in situations where standard self-play by
itself does not guarantee good test time performance and D
is insufficient to learn a good policy by behavioral cloning
alone.

5Note this is different from reward shaping as the probably that
a state is reached does not affect the supervised loss of the policy.

6As with the best response dynamics above using a compound
objective with a constant λ can, in theory, introduce new equilibria
during training. To be sure this does not occur we can anneal the
weight on the supervised loss over time with limt→∞ λt = 0. In
practice, however, using a fixed λ in our environments appeared
to create policies that were still consistent with test time equilibria
thus suggesting that if new equilibria were introduced they did not
have large basins of attraction for our policy-gradient based learning
procedures.

Result 2 (Experiment 3) OSP can find conventions that
have a small basin of attraction for MARL alone. Thus OSP
can be used in situations where self-play will rarely find a
test-time compatible convention.

For all experiments, we represent the states using sim-
ple neural networks. The first two experiments have rela-
tively low dimensional state representations so we use two
layer MLPs with 128 hidden units per layer and ELU non-
linearities. Our third experiment has a grid structure so we
represent the state using the convolutional neural network
architecture from (Peysakhovich and Lerer 2017).

For RL training we use A3C using a multi-agent variant of
the pytorch-a3c package (Kostrikov 2018) run on 40 threads.
We use 20 step returns and γ = .99. We use the Adam
method for optimization (Kingma and Ba 2014). For OSP,
we add the supervised term to the A3C loss with λ = 1,
using minibatches from D of size 20. Environment-specific
parameters are detailed in the subsections below. In each
experiment we compare the performance of OSP for various
sizes of D. We populate D with actions for all agents for
states sampled at uniform intervals from true test time play.

Traffic
We first consider a multi-agent traffic navigation game in-
spired by (Sukhbaatar, Fergus, and others 2016; Resnick et al.
2018). Each of 10 agents begins at a random edge of a grid
and can move around in each of the 4 cardinal directions or
stand still (see Figure 2). Each agent is given a goal to reach.
When the agent reaches the goal they receive a reward of +1
and then a new goal. If agents collide with another agent or
wall they receive a negative reward (−5 for colliding with
another agent, −.1 for colliding with a wall). Agents do not
have full observation of the environment. Rather, they have
access to the position of their goal relative to themselves and
a local view of any other agents nearby.

We train agents for a total of 800, 000 episodes. We found
it necessary to ramp the collision penalty linearly over the
first 400, 000 episodes to avoid agents becoming stuck in the
local minima of never moving.

We train 20 replicates and see that two incompatible con-
ventions emerge. This can be seen in Figure 2 where we plot
payoffs to an agent from one replicate paired with 9 agents
from another. We visualize the conventions by taking the
empirical average action taken by any agent in any of the
possible traffic coordinate locations (Figure 2 panel 3). We
find that the two conventions that emerge are similar to the
real world: either agents learn to drive on the left of the road
or they learn to drive on the right.

We now train agents using OSP and insert them into envi-
ronments with 9 pre-converged agents. The test time payoffs
to the transplanted agent for various sizes of D are shown
in Figure 2 panel 4 top. The dashed line corresponds to the
expected payoff of an agent trained using standard self-play
(no observations). We see 20 observations (2 observations
for each of the 10) agents is sufficient to guide OSP to com-
patible conventions. The bottom panel shows that this is not
enough data to train a good strategy via behavioral cloning
alone (i.e. using just the supervised objective).
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Figure 2: In the traffic game 10 agents navigate a grid world to reach goals (first panel). When agents reach their goal, they
receive a reward and are assigned a new goal. Agents have a local field of view (indicated in green) and know the relative position
of their next goal from their current position. Two incompatible conventions emerge across multiple training runs. MARL
agents achieve high rewards with their training partners (diagonal) but lower rewards with incompatible partners (second panel).
Visualizing these conventions shows that they differ in which side of the road to drive on (third panel). Given only 2 observations
for each agent OSP learns the correct test time convention (fourth panel), approaching the reward of centralized training (black
dashed line), while supervised training does not. The dashed line indicates the average reward of separate self-play training, and
error bars represent 95% confidence intervals derived from independent replicates.

Language
An important type of convention is language. There is a
resurgence of interest in the deep RL community in using
communication games to construct agents which are able to
communicate (Foerster et al. 2016; Lazaridou, Peysakhovich,
and Baroni 2017; Lowe et al. 2017).

We now apply OSP to the cooperative communication task
in the particle environment studied by (Lowe et al. 2017)
and (Mordatch and Abbeel 2017). In this environment there
are two agents, a speaker and a listener, and three landmarks
(blue, red, or green). One of the landmarks is randomly cho-
sen as a goal and the reward for both agents at each step is
equal to the distance of the listener from the landmark. How-
ever, which landmark is the goal during a particular episode
is only known to the speaker who is able to produce a com-
munication output from a set of 20 symbols. To solve the
cooperation task, agents thus need to evolve a simple ‘lan-
guage’. This language only requires 3 symbols to be used, but
this still allows for at least 6840 incompatible conventions
(one symbol per landmark).

In this experiment we use a lower discount factor of γ = .8
and as suggested by Lowe et al. we also use a centralized
critic. It was shown in prior work that if artificial agents
learn language by self-play they can learn arbitrary languages
which may not be compatible with new partners (Lazaridou,
Peysakhovich, and Baroni 2017). Indeed, when we pair two
agents who were trained separately they clearly do not speak
the same language - i.e. they cannot communicate and so
achieve low payoffs.

We look at the effect of adding observational data to the
training of either a speaker or listener (we train a total of 135
replicates to convergence). In the case of the speaker (whose
policy is a simple map from goals to communication symbols)
supervision is sufficient to learn the a good test-time language.
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Figure 3: In the speaker/listener particle environment (first
panel taken from the original paper) the speaker must commu-
nicate information to a listener who navigates to a landmark.
When a pair are trained together they can reach high payoffs
(black dashed line) but pairs trained separately with self-play
(red dashed line) perform quite poorly. OSP leads to agents
that reach high payoffs with their test time partner. Supervi-
sion alone is insufficient to construct good Listener agents
(plot is below the y axis for N < 1024). Error bars represent
confidence intervals derived from independent replicates.



However, pure behavioral cloning fails catastrophically for
the listener. Again, OSP with a relatively small number of
observations is able to achieve high payoffs (Figure 3).
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Figure 4: In the Stag Hunt two agents either coordinate to
catch a Stag or choose to grab plants alone. Hunting is risky
because hunting without a partner is ineffective. In this game
standard independent MARL typically converges to the safe
equilibrium rather than discovering the risky high-payoff
Hunt equilibrium (middle panel shows training behavior at
convergence). An agent trained separately cannot coordinate
when matched with a test-time partner who choose to hunt.
However OSP, with samples from the Hunt equilibrium, can
indeed converge to the Hunting convention during training
reaching a payoff almost as high as two Hunters trained to-
gether (green line). Error bars represent confidence intervals
derived from independent replicates.

We now consider a risky coordination game known as the
Stag Hunt. The matrix game version of the Stag Hunt has
both agents choosing either to Hunt (an action that require
coordination) or Forage (a safe action). Foraging yields a
sure (low) payoff whereas Hunting yields a high payoff if
the other agent chooses to Hunt also and a low payoff if
one shows up alone. It is known that in both matrix and
Markov versions of Stag Hunt games many standard self-play
based algorithms yield agents that converge to the inefficient
equilibrium in which both agents choose safe actions. This
happens because while our partner is not hunting effectively
(i.e. early in training), the payoff to hunting ourselves is quite

low. Thus, the basin of attraction of joint hunting is much
smaller than the basin of attraction of both foraging.

This situation is different from the ones in traffic and lan-
guage: here there are multiple conventions (hunt or forage)
but they are not payoff equivalent (hunting is better) nor do
they have similar sized basins of attraction (hunting is very
difficult to find via standard independent MARL).

We use the Markov version of Stag Hunt introduced by
Peysakhovich and Lerer where two agents live on a 8×8 grid.
Two plants and a stag are placed at random locations. If an
agent moves over a plant, it receives a reward of 1. Stepping
on the stag gives a reward of 5 to both players if they step on
it simultaneously, otherwise there is no reward. When either
a plant or stag is stepped on, it restarts in a new location.
Games last 100 rounds.

We start by constructing a test time hunting partner by
inducing joint hunting strategies in 40 replicates. Because
MARL by itself does not find hunt equilibria, we construct a
hunting partner by training an agent under a modified payoff
structure (payoff of 0 for plants; payoff of 0.1 for unilateral
hunting).

We then test whether we can train agents in the original
game who can coordinate with test time partners that hunt.
We use OSP with varying amounts of data from the hunting
agents. We see that with moderate amounts of data OSP often
converges to the hunting convention at test time even though
two agents trained together using independent MARL fail
to find the high payoff joint stag equilibrium in any of the
replicates. As a result, OSP outperforms even centralized self-
play because the observations of the risky partner guide the
agent to a better equilibrium. As with the traffic and language
environments above we see that pure behavioral cloning is
insufficient to construct good test time strategies (Figure 4).

Conclusion
Conventions are an important part of social behavior and
many multi-agent environments support multiple conventions
as equilibria. If we want to construct artificial agents that can
adapt to people (rather than requiring people to adapt to them)
these agents need to be able to act according to the existing
social conventions. In this paper we have discussed how a
simple procedure that combines small amounts of imitation
learning with self-play can lead to agents that can learn social
conventions.

There are many open questions remaining in the study of
conventions and building agents that can learn them quickly.
OSP uses a straightforward combination of RL and behav-
ioral cloning. It would be interesting to explore whether ideas
from the learning with expert demonstrations literature (Hes-
ter et al. 2017). In addition, OSP follows current deep RL
paradigms splits strategy construction into a training and a
test phase. An interesting extension is to consider the OSP
training strategies can be fine-tuned during test time.

There is a large recent interest in hybrid systems which
include both human and artificially intelligent participants
(Shirado and Christakis 2017). Thus, another key extension
of our work is to understand whether techniques like OSP
can construct agents that can interact with humans in more
complex environments.
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Appendix
Relationship Between Markov Strategic
Complements and Strategic Complements
The original definition of strategic complements comes from
games with continuous actions used to model multiple firms
in a market. In the simplest example we have multiple firms
which produce units of goods (x1, x2, . . . , xn). The revenue
function of each firm i is Ri(xi, x−i) where Ri is smooth,
strictly concave, increasing and has Ri(xi = 0, x−i) = 0.

The goods are strategic complements if
∂2Ri
∂xi∂xj

> 0, in other

words goods are strategic complements if “more ‘aggressive’
play... by one firm... raises the marginal profitabilities [of
the others].” (Bulow, Geanakoplos, and Klemperer 1985)
Firms have costs of production given by ci(xi) which has
c(0) = 0, c′(0) = 0, is convex, and increasing. Thus each
firm’s objective function is

Ri(xi, x−i)− ci(xi)

If firm −i is producing x−i then firm i’s best response
x∗i (x−i) sets

∂Ri(x
∗
i (x−i), x−i)

∂xi
=
∂ci(x

∗
i (x−i)

∂xi
.

Given the definition of strategic complements above this

means that
∂x∗i
∂xj

> 0 for all other firms j.

Strategic complements implies our Markov strategic com-
plements in a matrix game with multiple equilibria (since any
firm changing their production level higher or lower causes
other firms to also want to change their production). Markov
strategic complements is weaker than strategic complements
in matrix games since it only pins down how best responses
to shift when others change to equilibrium actions rather than
any action shift (though if action spaces in each state were
totally ordered one could amend the definition to keep all of
the properties).

Proof of Main Theorem
Proof 1
Lemma 1: In a Markov strategic complements (MSC) game,
any policy π in the basin of attraction of an equilibrium
A remains there under observational initialization, i.e.
πi ∈ ΠA =⇒ π̄i(DA) ∈ ΠA.

We define the operator BR(k) as k iterations of the best
response operator,

BR(k)(πi) = BRi(BR−i(BRi(. . . BR−i(πi)))).

Consider an initial policy πi ∈ ΠA for some equilibrium
A. There exists kc such that BR(kc) = Ai. Now consider an
observationally initialized policy π̄i(DA) for some dataset
D drawn from Ai. By definition, this implies that π̄i %A πi.
Now, since the game is MSC,

BR−i(π̄i(DA)) %A BR
−i(πi).

By repeated application of the MSC property, we find that for
all k,

BR(k)(π̄i(DA)) %A BR
(k)(πi).

To conclude, we note that BR(kc)(π̄0
i (DA)) %A Ai, which

implies BR(kc)(π̄i(DA)) = Ai.

Lemma 2: In a MSC game with a finite number of states,
there exists a state s such that for any DA that contains the
state-action pair (s,Ai(s)), there is a policy not in the basin
of attraction of A but which enters the basin of attraction of
A under observational initialization.

Consider a policy π0
i /∈ ΠA, and order the states lexico-

graphically (s1, s2, . . . , sM ). Now consider the sequence of
policies πki where πki (sl) = Ai(sl) for l < k and πki (sl) =
π0(sl) for k ≥ l. We know that πMi = Ai ∈ ΠA, there-
fore there exists some t such that πti /∈ ΠA and πt+1

i ∈ ΠA.
Now, consider a dataset DA containing the state-action pair
(st+1, Ai(st+1)). Then π̄ti(DA) %A πt+1. As discussed in
the last section, if πt+1 ∈ ΠA and π̄ti(DA) %A πt+1, then
π̄ti(DA) ∈ ΠA. Therefore, for any dataset containing st+1,
the policy πti enters the basin of attraction of A under obser-
vational initialization.
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