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Abstract

Recent research has highlighted the vulnerabilities of modern
machine learning based systems to bias, especially for seg-
ments of society that are under-represented in training data. In
this work, we develop a novel, tunable algorithm for mitigat-
ing the hidden, and potentially unknown, biases within train-
ing data. Our algorithm fuses the original learning task with a
variational autoencoder to learn the latent structure within the
dataset and then adaptively uses the learned latent distribu-
tions to re-weight the importance of certain data points while
training. While our method is generalizable across various
data modalities and learning tasks, in this work we use our al-
gorithm to address the issue of racial and gender bias in facial
detection systems. We evaluate our algorithm on the Pilot Par-
liaments Benchmark (PPB), a dataset specifically designed to
evaluate biases in computer vision systems, and demonstrate
increased overall performance as well as decreased categori-
cal bias with our debiasing approach.

1 Introduction
Machine learning (ML) systems are increasingly making de-
cisions that impact the daily lives of individuals and soci-
ety in general. For example, ML and artificial intelligence
(AI) are already being used to determine if a human is eli-
gible to receive a loan (Khandani, Kim, and Lo 2010), how
long a criminal should spend in prison (Berk, Sorenson, and
Barnes 2016), the order in which a person is presented the
news (Nalisnick et al. 2016), or even diagnoses and treat-
ments for medical patients (Mazurowski et al. 2008).

The development and deployment of fair and unbiased
AI systems is crucial to prevent any unintended side ef-
fects and to ensure the long-term acceptance of these al-
gorithms (Miller 2015; Courtland 2018). Even the seem-
ingly simple task of facial recognition (Zafeiriou, Zhang,
and Zhang 2015) has been shown to be subject to ex-
treme amounts of algorithmic bias among select demograph-
ics (Buolamwini and Gebru 2018). For example, (Klare et al.
2012) analyzed the face detection system used by the US
law enforcement and discovered significantly lower accu-
racy among dark women between the age of 18-30 years old.
This is especially concerning since these facial recognition
systems are often not deployed in isolation but rather as part
of a larger surveillance or criminal detection pipeline (Ab-
dullah et al. 2017).
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Figure 1: Batches sampled for training without (left) and
with (right) learned debiasing. The proposed algorithm
identifies, in an unsupervised manner, under-represented
parts of training data and subsequently increases their re-
spective sampling probability. The resulting batch (right)
from the CelebA dataset shows increased diversity in fea-
tures such as skin color, illumination, and occlusions.

While deep learning based systems have been shown to
achieve state-of-the-art performance on many of these tasks,
it has also been demonstrated that algorithms trained with
biased data lead to algorithmic discrimination (Bolukbasi
et al. 2016; Caliskan, Bryson, and Narayanan 2017). Re-
cently, benchmarks quantifying discrimination (Kilbertus et
al. 2017; Hardt et al. 2016) and even datasets designed
to evaluate the fairness of these algorithms (Buolamwini
and Gebru 2018) have emerged. However, the problem of
severely imbalanced training datasets and the question of
how to integrate debiasing capabilities into AI algorithms
still remain largely unsolved.

In this paper, we tackle the challenge of integrating debi-
asing capabilities directly into a model training process that
adapts automatically and without supervision to the short-
comings of the training data. Our approach features an end-
to-end deep learning algorithm that simultaneously learns
the desired task (e.g., facial detection) as well as the under-
lying latent structure of the training data. Learning the latent
distributions in an unsupervised manner enables us to un-
cover hidden or implicit biases within the training data. Our
algorithm, which is built on top of a variational autoencoder



(VAE), is capable of identifying under-represented examples
in the training dataset and subsequently increases the prob-
ability at which the learning algorithm samples these data
points (Fig. 1).

We demonstrate how our algorithm can be used to debias
a facial detection system trained on a biased dataset and to
provide interpretations of the learned latent variables which
our algorithm actively debiases against. Finally, we com-
pare the performance of our debiased model to a standard
deep learning classifier by evaluating racial and gender bias
on the Pilot Parliaments Benchmark (PPB) dataset (Buo-
lamwini and Gebru 2018).

The key contributions of this paper can be summarized as:
1. A novel, tunable debiasing algorithm which utilizes

learned latent variables to adjust the respective sampling
probabilities of individual data points while training; and

2. A semi-supervised model for simultaneously learning a
debiased classifier as well as the underlying latent vari-
ables governing the given classes; and

3. Analysis of our method for facial detection with biased
training data, and evaluation on the PPB dataset to mea-
sure algorithmic fairness across race and gender.
The remainder of this paper is structured as follows: we

summarize the related work in Sec. 2, formulate the model
and debiasing algorithm in Sec. 3, describe our experimental
results in Sec. 4, and provide concluding remarks in Sec. 5.

2 Related Work
Interventions that seek to introduce fairness into machine
learning pipelines generally fall into one of three cate-
gories: those that use data pre-processing before training, in-
processing during training, and post-processing after train-
ing. Several pre-processing and in-processing methods rely
on new, artificially generated debiased data (Calmon et
al. 2017) or resampling (More 2016). However, these ap-
proaches have largely focused on class imbalances, rather
than variability within a class, and fail to use any infor-
mation about the structure of the underlying latent fea-
tures. Learning the latent structure of data has a long stand-
ing history in machine learning, including Expectation-
Maximization (Bailey, Elkan, and others 1994), topic mod-
elling (Blei 2012), latent-SVM (Felzenszwalb, McAllester,
and Ramanan 2008), and more recently, variational autoen-
coders (VAE) (Kingma and Welling 2013; Rezende, Mo-
hamed, and Wierstra 2014). The presented work uses a novel
VAE-based approach for resampling based on the data’s
underlying latent structure, debiases automatically during
training, and does not require any data pre-processing or an-
notation prior to training or testing.

Resampling for class imbalance: Resampling ap-
proaches have largely focused on addressing class imbal-
ances (More 2016; Zhou and Liu 2006), as opposed to biases
within individual classes. For example, duplicating instances
of the minority class as in (Lu, Guo, and Feldkamp 1998) has
been used as pre-processing steps for mitigating class imbal-
ance, yet is not capable of running adaptively during training
itself. Further, applying these approaches to debiasing vari-
abilities within a class would require a priori knowledge of

the latent structure to the data, which necessitates manual
annotation of the desired features. On the other hand, our
approach debiases variability within a class automatically
during training and learns the latent structure from scratch
in an unsupervised manner.

Generating debiased data: Recent approaches have uti-
lized generative models (Sattigeri et al. 2018) and data trans-
formations (Calmon et al. 2017) to generate training data
that is more ‘fair’ than the original dataset. For example,
(Sattigeri et al. 2018) used a generative adversarial network
(GAN) to output a reconstructed dataset similar to the input
but more fair with respect to certain attributes. Preprocessing
data transformations that mitigate discrimination, as in (Cal-
mon et al. 2017), have also been proposed, yet such methods
are not learned adaptively during training nor do they pro-
vide realistic training examples. In contrast to these works,
we do not rely on artificially generated data, but rather use a
resampled, more representative subset of the original dataset
for debiasing.

Clustering to identify bias: Supervised learning ap-
proaches have also been used to characterize biases in im-
balanced data sets. Specifically, k-means clustering has been
employed to identify clusters in the input data prior to train-
ing and to inform resampling the training data into a smaller
set of representative examples (Nguyen, Bouzerdoum, and
Phung 2008). However, this method does not extend to high
dimensional data like images or to cases where there is
no notion of a data ‘cluster’, and relies on significant pre-
processing. Our proposed approach overcomes these limi-
tations by learning the latent structure using a variational
approach.

3 Methodology
Problem Setup
Consider the problem of binary classification in which we
are presented with a set of paired training data samples
Dtrain = {(x(i),y(i))}ni=1 consisting of features x ∈ Rm
and labels y ∈ Rd. Our goal is to find a functional mapping
f : X → Y parameterized by θ which minimizes a certain
loss L(θ) over our entire training dataset. In other words, we
seek to solve the following optimization problem:

θ∗ = argmin
θ

1

n

n∑
i=1

Li(θ) (1)

Given a new test example, (x,y), our classifier should
ideally output ŷ = fθ(x) where ŷ is “close” to y, with
the notion of closeness being defined from the original loss
function. Now, assume that each datapoint also has an asso-
ciated continuous latent vector z ∈ Rk which captures the
hidden, sensitive features of the sample (Zemel et al. 2013).
We can formalize the notion of a biased classifier as follows:
Definition 1 A classifier, fθ(x), is biased if its decision
changes after being exposed to additional sensitive feature
inputs. In other words, a classifier is fair with respect to a
set of latent features, z, if: fθ(x) = fθ(x, z).

For example, when deciding if an image contains a face
or not, the skin color, gender, or even age of the individual



are all underlying latent variables and should not impact the
classifier’s decision.

To ensure fairness of a classifier across these various la-
tent variables, the dataset should contain roughly uniform
samples over the latent space. In other words, the training
distribution itself should not be biased to overrepresent a
certain category while under-representing others. Note that
this is different than claiming that our dataset should be bal-
anced with respect to the classes (i.e., include roughly the
same number of faces as non-faces in the dataset). Namely,
we are saying that within a single class the unobserved la-
tent variables should also be balanced. This would promote
the notion that all instances of a single class will be treated
fairly by the classifier such that even if a latent variable was
changed to the opposite extreme (e.g., skin tone from light
to dark) the accuracy of the classifier would not be changed.

Furthermore, given a labeled test set across the space of
sensitive latent variables, z, we can measure the bias of the
classifier by computing its accuracy across each of the sen-
sitive categories (e.g. skin tone). While the overall accuracy
of the classifier is the mean accuracy over all sensitive cat-
egories, the bias is the variance in accuracies across all re-
alizations of these categories (e.g., light vs. dark faces). For
example, if a classifier performs equally well no matter the
realization of a specific latent variable (e.g., skin tone), it
will have zero variance in accuracy, and thus be called un-
biased with respect to that variable. On the other hand, if
some realizations of the latent variable cause the classifier to
perform better or worse, the variance in the accuracies will
increase, and thus, so will the overall bias of said classifier.

While it is possible to use a set of human defined sensitive
variables to ensure fair representation during training, this
requires time intensive manned annotation of each variable
over the entire dataset. Additionally, this approach is subject
to potential human bias in the selection of which variables
are deemed sensitive or not. In this work, we address this
problem by learning the latent variables of the class in an en-
tirely unsupervised manner and proceed to use these learned
variables to adaptively resample the dataset while training.
In the following subsection, we will outline the architecture
used to learn the latent variables.

Learning Latent Structure with Variational
Autoencoders
In this work, we learn the latent variables of the class in
an entirely unsupervised manner and proceed to use these
to adaptively resample the dataset while training. To accom-
plish this, we propose an extension of the variational autoen-
coder (VAE) network architecture: a debiasing-VAE (DB-
VAE). The encoder portion of the VAE learns an approxi-
mation qφ(z|x) of the true distribution of the latent variables
given a data point. As opposed to classical VAE architec-
tures, we also introduce d additional output variables where
ŷ ∈ Rd. With k latent variables and d output variables, the
encoder outputs 2k+d activations corresponding toµ ∈ Rk,
Σ = Diag[σ2] � 0, which are used to define the distribu-
tion of z, and the d-dimensional output, ŷ.

Note that, in order to still learn our original supervised
learning task we assign and explicitly supervise the d out-
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Figure 2: Debiasing Variational Autoencoder. Architec-
ture of the semi-supervised DB-VAE for binary classifi-
cation (blue region). The unsupervised latent variables are
used to adaptively resample the dataset while training.

put variables. This, in turn, transforms our traditional VAE
model from an entirely unsupervised model to a semi-
supervsied model, where some latent variables are implicitly
learned by trying to reconstruct the input and the others are
explicitly supervised for a specific task (e.g. classification).
For example, if we originally wanted to train a binary classi-
fier (i.e., ŷ ∈ {0, 1}), our DB-VAE model would learn a la-
tent encoding of k latent variables (i.e., {zi}i∈{1,k}) as well
as a single variable specifically for classification: z0 = ŷ.

A decoder network mirroring the encoder is then used to
reconstruct the input back from the latent space by approxi-
mating pθ(x|z). VAEs utilize reparameterization to differen-
tiate the outputs through a sampling step, where we sample
ε ∼ N (0, (I)) and compute z = µ(x) + Σ

1
2 (x) ◦ ε. This

decoded reconstruction enables unsupervised learning of the
latent variables during training, and is thus necessary for au-
tomated debiasing of the data during training.

We train the network end-to-end using backpropagation
with a three component loss function comprising of a super-
vised latent loss, a reconstruction loss, and a latent loss for
the unsupervised variables. For a binary classification task,
for example, the supervised loss Ly(y, ŷ) is given by the
cross-entropy loss; the reconstruction loss Lx(x, x̂) is given
by the Lp norm between the input and the reconstructed out-
put; and the latent loss LKL(µ, σ) is given by the Kullback-
Liebler (KL) divergence. Finally, the total loss is a weighted
combination of these three losses:

LTOTAL = c1

[ ∑
i∈{0,1}

yi log

(
1

ŷi

)]
︸ ︷︷ ︸

Ly(y,ŷ)

+c2

[
‖x− x̂‖p

]
︸ ︷︷ ︸
Lx(x,x̂)

+ c3

[
1

2

k−1∑
j=0

(σj + µ2
j − 1− log(σj))

]
︸ ︷︷ ︸

LKL(µ,σ)

(2)

where c1, c2, c3 are the weighting coefficients to impact the
relative importance of each of the individual loss functions.
For comparison, the baseline model used for the desired task
has a similar architecture as the DB-VAE, without the unsu-
pervised latent variables and decoder network, and would be
trained according to only the supervised loss function.



Note that special care needs to be taken when feeding
training examples from classes which you do not want to
debias. For example, in the facial detection problem, we pri-
marily care about ensuring that our positive dataset of faces
is fair and unbiased, and less about debiasing the negative
example where there is no face present. For these negative
samples, the gradients from the decoder and latent space
should be stopped and not backpropogated. This effectively
means that, for these classes, we only train the encoder to
improve the supervised loss.

Algorithm for Automated Debiasing
In this section, we present the algorithm for adaptive re-
sampling of the training data based on the latent struc-
ture learned by our DB-VAE model. By dropping over-
represented regions of the latent space according to their
frequency of occurrence, we increase the probability of se-
lecting rarer data for training. This is done adaptively as the
latent variables themselves are being learned during train-
ing. Thus, our debiasing approach accounts for the complete
distribution of the underlying features in the training data.

The training dataset is fed through the encoder network,
which provides an estimate Q(z|X) of the latent distribu-
tion. We seek to increase the relative frequency of rare data
points by increased sampling of under-represented regions
of the latent space. To do so, we approximate the distribution
of the latent space with a histogram Q̂(z|X) with dimen-
sionality defined by the number of latent variables, k. To
circumvent the high-dimensionality of the histogram when
the latent space becomes increasingly complex, we simplify
further and use independent histograms to approximate the
joint distribution. Specifically, we define an independent his-
togram, Q̂i(zi|X), for each latent variable zi:

Q̂(z|X) ∝
∏
i

Q̂i(zi|X) (3)

This allows us to neatly approximate Q(z|X) based on the
frequency distribution of each of the learned latent vari-
ables. Finally, we introduce a single parameter, α, to tune
the degree of debiasing introduced during training. We de-
fine the probability distribution of selecting a datapoint x as
W(z(x)|X), parameterized by the debiasing parameter α:

W(z(x)|X) ∝
∏
i

1

Q̂i(zi(x)|X) + α
(4)

We provide pseudocode for training the DB-VAE in Algo-
rithm 1. At every epoch all inputs x from the original dataset
X are propagated through the model to evaluate the corre-
sponding latent variables z(x). The histograms Q̂i(zi(x)|X)
are updated accordingly. During training, a new batch is
drawn by keeping inputs, x, from the original dataset, X ,
with likelihood W (z(x)|X). Training on the debiased data
batch now forces the classifier into a choice of parameters
that work better in rare cases without strong deterioration of
performance for common training examples. Most impor-
tantly, the debiasing is not manually specified beforehand
but instead based on learned latent variables.

Algorithm 1 Adaptive re-sampling for automated debiasing
of the DB-VAE architecture
Require: Training data {X,Y }, batch size b

1: Initialize weights {φ, θ}
2: for each epoch, Et do
3: Sample z ∼ qφ(z|X)

4: Update Q̂i(zi(x)|X)
5: W(z(x)|X)←

∏
i

1
Q̂i(zi(x)|X)+α

6: while iter < n
b do

7: Sample xbatch ∼ W(z(x)|X)
8: L(φ, θ)← 1

b

∑
i∈xbatch

Li(φ, θ)
9: Update: [w ← w − η∇φ,θL(φ, θ)]w∈{φ,θ}

10: end while
11: end for

Intuitively, the parameter α as tuning the degree of de-
biasing. As α → 0, the subsampled training set will tend
towards uniform over the latent variables z. As α→∞, the
subsampled training set will tend towards a random uniform
sample of the original training dataset (i.e., no debiasing).

4 Experiments
To validate our debiasing algorithm on a real-world problem
with significant social impact, we learn a debiased facial de-
tector using potentially biased training data. Here we define
the facial detection problem, describe the datasets used, and
outline model training, debiasing, and evaluation.

For the facial detection problem, we are given a set of
paired training data samples Dtrain = {(x(i),y(i))}ni=1,
where x(i) are the raw pixel values of an image patch and
y(i) ∈ {0, 1} are their respective labels, indicating the pres-
ence of a face. Our goal is to ensure that the set of positive
examples used to train a facial detection classifier is fair and
unbiased. The positive training data may potentially be bi-
ased with respect to certain attributes such as skin tone, in
that particular instances of those attributes may appear more
or less frequently than other instances. Thus, in our exper-
iments, we train a full DB-VAE model to learn the latent
structure underlying the positive (face) images and use the
adaptive resampling approach outlined in Algorithm 1 to de-
bias the model with respect to facial features. For negative
examples, we only train the encoder portion of our network,
as described in Section 3. We evaluate the performance of
our debiased models relative to standard, biased classifiers
on the PPB dataset and provide estimates of the precision
and bias of each model as performance metrics.

Datasets
We train our classifiers on a dataset of n = 4× 105 images,
consisting of 2 × 105 positive (images of faces) and neg-
ative (images of non-faces) examples, split 80% and 20%
into training and validation sets, respectively. Positive ex-
amples were taken from the CelebA dataset (Liu et al. 2015)
and cropped to a square based on the annotated face bound-
ing box. Negative examples were taken from the ImageNet
dataset (Deng et al. 2009), from a wide variety of non-human
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Figure 3: Loss evolution and validation accuracy. Conver-
gence of the total loss on the training set (left) and classifi-
cation accuracy on the validation set (right) for models with
varying degrees of debiasing.

categories. All images were resized to 64× 64.
After training, we evaluate our debiasing algorithm on the

PPB test dataset (Buolamwini and Gebru 2018), which con-
sists of images of 1270 male and female parliamentarians
from various African and European countries. Images are
consistent in pose, illumination, and facial expression, and
the dataset exhibits parity in both skin tone and gender. The
gender of each face is annotated with the sex-based “Male”
and “Female” labels. Skin tone annotations are based on
the Fitzpatrick skin type classification system (Fitzpatrick
1988), with each image labeled as “Lighter” or “Darker”.

Training the Models
For the classical facial detection task, we train a convolu-
tional neural network, with four sequential convolutional
layers (5× 5 filters with 2× 2 strides) for feature extraction.
Final classification is done with an additional two fully con-
nected layers with 1000 and 1 hidden neurons in each layer
respectively. All layers in the network use ReLU activation
and batch normalization (Ioffe and Szegedy 2015). Our DB-
VAE architecture shares this same classification network for
the encoder, except for the final fully connected layer which
now outputs an additional k latent variables for a total of
2k + 1 activations. A decoder, which mirrors the encoder
with 2 fully connected layers and 4 de-convolutional layers,
is then used to reconstruct the original input image. We train
our models by minimizing the empirical training loss as de-
fined in Eq. 2 with L2 reconstruction loss.

In our experiments, we additionally block all gradients
from the decoder network when y = 0, i.e., for negative
examples, as we only want to debias for positive face exam-
ples. In addition to training the standard classification net-
work with no debiasing, we trained DB-VAE models with
varying degrees of debiasing, defined by the parameter α,
for 50 epochs and evaluated their performance on the vali-
dation set. Models were re-trained from scratch 5 times each
for added statistical robustness of results.

Automated Debiasing of Facial Detection Systems
We explore the output of the debiasing algorithm and pro-
vide extensive evaluation of our learned models on the

PPB dataset. We consider the resampling probabilities,
W(z(x)|X), that arise from learning a debiased model. As
shown in Fig. 4A, as the probability of resampling increases,
the number of data points within the corresponding bin de-
creases, suggesting that those images more likely to be re-
sampled are those characterized by ‘rare’ features.

Indeed, as the probability of resampling increases, the cor-
responding images become more diverse, as evidenced by
the four sample faces from each frequency bin in Fig. 4A.
This observation is further validated by considering the ten
faces in the training data with the lowest and highest resam-
pling probabilities (Fig. 4B,C respectively). The ten faces
with the lowest resampling probability appear quite uniform,
with consistent skin tone, hair color, forward gaze, and back-
ground color. In contrast, the ten faces with the highest re-
sampling probability display rarer features such as headwear
or eyewear, tilted gaze, shadowing, and darker skin. Taken
together, these results imply that our algorithm identifies and
then actively resamples those data points with rarer, more di-
verse features based on a learned latent representation.

We observed that the DB-VAE is able to learn facial fea-
tures such as skin tone, presence of hair, and azimuth, as well
as other features such as gender and age by slowly perturb-
ing the value of a single latent variable and and feeding the
resulting encoding through the decoder (Fig. 5A). This sup-
ports the hypothesis that our DB-VAE algorithm is capable
of debiasing against such features since the resampling prob-
abilities are directly defined based on the probability distri-
butions of individual learned latent variables (Alg. 1).

To evaluate the performance of our debiasing approach,
we utilized classification accuracy (positive predictive
value) as a metric, and tested our models on the PPB dataset.
For this evaluation, we extracted patches from each image
using sliding windows of varying dimension, and fed these
extracted image patches to our trained models. We output a
positive match of a face if the classifier identifies a face in
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any one of the subpatches within the image.
To demonstrate debiasing against specific latent fea-

tures, we quantified classification performance on individ-
ual demographics. Specifically, we considered skin tone
(light/dark) and gender (male/female). We denote A as the
set of classification accuracies of a model on each of the four
intersectional classes. We compared the accuracy of models
trained with and without debiasing on both individual demo-
graphics (race/gender) and the PPB dataset as a whole, and
provide results on the effect of the debiasing parameter α on
performance (Fig. 5). Recall that no debiasing corresponds
to the limit α → ∞, where we uniformly sample over the
original training set without learning the latent variables.
Conversely, α→ 0, corresponds to sampling from a uniform
distribution over the latent space. Error bars (standard error
of the mean) are provided to visualize statistical significance
of differences between the trained models.

As shown in Fig. 5, greater debiasing power (decrease
α) significantly increased classification accuracy on “Dark
Male” subjects, consistent with the hypothesis that adaptive
resampling of rare instances (e.g., dark faces) in the training
data results in less algorithmic discrimination. This suggests
that our algorithm can debias for a qualitative feature like
skin tone, which has significant social implications for its
utility in improving fairness in facial detection systems.

In contrast to the trend observed with dark male faces,
the classification accuracy on “Light Male” faces remained
nearly constant for both the biased and debiased models. Ad-
ditionally, the accuracy on light male subjects was higher
than the three other groups, consistent with (Buolamwini
and Gebru 2018). This suggests that our debiasing algorithm
does not sacrifice performance on categories which already

Table 1: Accuracy and bias on PPB test dataset.
E[A]
(Precision)

V ar[A]
(Measure of Bias)

No Debiasing 95.13 28.84
α = 0.1 95.84 25.43
α = 0.05 96.47 18.08
α = 0.01 97.13 9.49
α = 0.001 97.36 9.43

have high precision. Importantly, the high, near constant ac-
curacy suggests that an arbitrary classification model trained
on the CelebA dataset may be biased towards light male sub-
jects, and further supports the need for approaches that seek
to reduce such biases.

Although the DB-VAE improved accuracy on dark males
significantly, it never reached the accuracy of light males.
Despite the fact that we debias our training data with re-
spect to latent variables such as skin tone, there are inher-
ently fewer examples of dark male faces in our data. Our
model is simply limited by infrequency of these examples
but we note that increasing the overall size of our training
dataset may further mitigate this effect.

We summarize the key trends in overall performance with
DB-VAE in Table 1. As confirmed by Fig. 5, the overall
precision, E[A], increased with increased debiasing power
(decreasing α). Additionally, we observed a decrease in the
variance in accuracy between categories, indicative of de-
creased bias with greater debiasing. Together, these results
suggest effective debiasing with DB-VAE.

5 Conclusion
In this paper, we propose a novel, tunable debiasing algo-
rithm to adjust the respective sampling probabilities of indi-
vidual data points while training. By learning the underlying
latent variables in an entirely unsupervised manner, we can
scale our approach to large datasets and debias for latent fea-
tures without ever hand labeling them in our training set.

We apply our approach to facial detection to promote al-
gorithmic fairness by reducing hidden biases within training
data. Given a biased training dataset, our debiased models
show increased classification accuracy and decreased cate-
gorical bias across race and gender, compared to standard
classifiers. Finally, we provide a concrete algorithm for de-
biasing as well as an open source implementation of our
model.

The development and deployment of fair and unbiased
AI systems is crucial to prevent unintended discrimination
and to ensure the long-term acceptance of these algorithms.
We envision that the proposed approach will serve as an ad-
ditional tool to promote systematic, algorithmic fairness of
modern AI systems.
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