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Abstract
People frequently face challenging decision-making prob-
lems in which outcomes are uncertain or unknown. Artifi-
cial intelligence (AI) algorithms exist that can outperform
humans at learning such tasks. Thus, there is an opportunity
for AI agents to assist people in learning these tasks more
effectively. In this work, we use a multi-armed bandit as a
controlled setting in which to explore this direction. We pair
humans with a selection of agents and observe how well each
human-agent team performs. We find that team performance
can beat both human and agent performance in isolation. In-
terestingly, we also find that an agent’s performance in iso-
lation does not necessarily correlate with the human-agent
team’s performance. A drop in agent performance can lead
to a disproportionately large drop in team performance, or
in some settings can even improve team performance. Pair-
ing a human with an agent that performs slightly better than
them can make them perform much better, while pairing them
with an agent that performs the same can make them them
perform much worse. Further, our results suggest that people
have different exploration strategies and might perform bet-
ter with agents that match their strategy. Overall, optimizing
human-agent team performance requires going beyond opti-
mizing agent performance, to understanding how the agent’s
suggestions will influence human decision-making.

Introduction
Typically, research on human-agent learning focuses on ei-
ther situations where agents learn from people (e.g., learn-
ing from demonstration, recommender systems) or people
learn from agents (e.g., algorithmic teaching). In contrast,
our work focuses on tasks in which both the human and the
agent are learning—neither is an expert yet. We are moti-
vated by these tasks for two reasons. First, there are situa-
tions where this is obviously true, like making stock invest-
ments. But even for situations in preference learning where
traditionally we assume people are experts (as in recom-
mender systems), in reality people might actually be learn-
ing about their preferences as they take different actions and
observe their outcomes. For instance, we might not know
how we feel about Romanian food until we visit a restau-
rant, and even then we have to account for the possibility of
having an unusually good or bad experience.
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Figure 1: The suggestion-based collaborative-learning set-
ting, in which the human takes actions in the world after
seeing suggested actions from the agent.

When it comes to learning such tasks, humans tend to
struggle. We are not the best at balancing exploration and ex-
ploitation (Banks, Olson, and Porter 1997) or internalizing
our experiences thus far. However, AI algorithms exist that
can significantly outperform humans at these kinds of tasks.
Thus, there is an opportunity for such agents to improve hu-
man performance by providing assistance. In particular, an
agent can assist by providing suggestions.
Formulation of assistance. In this work, we study the per-
formance of human-agent teams in the context of a multi-
armed bandit problem. This functions as a controlled set-
ting in which outcomes are uncertain. Agents provide sug-
gestions by indicating which arm the human should pull at
each time step. Importantly, this setting also cleanly captures
the exploration vs. exploitation trade-off commonly encoun-
tered in reinforcement learning and robotics, in which an
agent must decide whether to exploit the information it has
about the world to maximize short-term reward or explore
different options to ultimately find the best option. This
gives us a relevant spectrum for analyzing the types of strate-
gies employed by both humans and agents. In our experi-
ments, we pair people with four agents spanning this spec-
trum (Fig. 1).
The team can be better than the best team member. An
encouraging result is that with the right algorithm, people



not only perform better than in isolation, but they end up
performing even better than the agent does in isolation. The
team is more than the sum of its parts.
Optimizing team performance is not the same as optimiz-
ing learning performance. We expected that agent perfor-
mance in isolation would correlate with human-agent team
performance: the better the agent is, the better its sugges-
tions, and thus the better the human’s decisions. The first in-
teresting result of our work is that we find evidence against
this correlation. We find that a small drop in the agent’s per-
formance can lead to a disproportionately large drop in the
human-team performance. Pairing a person with an agent
that performs at their level can decrease their performance,
while pairing them with an agent that is slightly better than
them can increase beyond the agent’s performance in iso-
lation. Even further, a large drop in agent performance can
lead to a slight improvement in team performance!
Agents have implicit (rather than explicit) influence.
When analyzing how these differences in team performance
came about, we were surprised to find that people were not
actually changing their mind and taking the agents’ sug-
gestions. How, then, do agents influence the outcome? We
found that agents actually have a more implicit influence:
suggestions do not change the person’s mind immediately,
but rather influence the choices the person makes later,
i.e. they change the person’s strategy. Different algorithms
achieve different amounts of such influence.
People perform better with agents that are more like
them. When analyzing what might cause this difference in
implicit influence, we found that people’s unassisted strate-
gies naturally group into two categories from the perspective
of exploration (i.e., entropy of arm pulls over time). Each of
these strategies is most similar to a specific learning algo-
rithm, and it is that algorithm that tends to assist them best.

Overall, our findings suggest that when using sugges-
tions to assist people who are learning a task, we should
not compute the utility of a suggestion by assuming that it
will be taken. An AI’s suggestions end up having different
amounts of influence, largely of the more implicit kind—
not changing decisions immediately, but influencing strategy
over time.

Related Work
One of the most common applications of multi-armed ban-
dits is in recomender systems (Li et al. 2010; 2011). The
arms of the bandit are the different options (e.g., news arti-
cles or movies) to show to the user and the reward is based
on whether or not the user accepts the recommendation. This
assumes the user knows what they want and the system seeks
to show them options they will like. In this work, we modify
this assumption: we consider a bandit setting where humans
are learning about the quality of the options themselves. Our
experiments show that helping a person learn more effec-
tively is a different task than optimizing reward in isolation.
Algorithms which perform comparably on this measure can
fare quite differently when used to suggest arms to a person.

Studies to understand human policies for multi-armed
bandits have found that humans are suboptimal in their
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Figure 2: The average regret obtained by each agent in iso-
lation, averaged over 10,000 simulations, and the average
regret obtained by humans in isolation.
exploration: they over-explore (Anderson 2001), under-
explore (Meyer and Shi 1995; Horowitz 1973), or both
(Banks, Olson, and Porter 1997). People fall into distinct
categories in terms of their cumulative regret when doing
spatial bandit problems (Reverdy 2014), and human perfor-
mance can be well-captured using stochastic Bayesian infer-
ence algorithms (Reverdy, Srivastava, and Leonard 2014).

Human-agent teams have been studied in resource al-
location problems with uncertain outcomes, which can be
thought of as multi-armed bandit problems. Prior work im-
proved human-agent collaboration in this setting by using
physical or user-interface elements (Ramchurn et al. 2015)
or by modeling people’s responses to an agent’s actions (Wu
et al. 2015). These scenarios differ from our work in that
agents typically have full or partial control over actions,
whereas we explore the setting in which only the human can
take actions; the agent can only provide suggestions.

Research on improving human-robot team performance
often focuses on settings in which both the human(s) and
robot(s) take actions in the environment. Although our work
does not deal with physical robots, successful strategies for
human-robot collaboration can guide the development of
successful strategies for human-AI collaboration, and vice
versa. Prior work found that performance in human-robot
teams improves when human and robot teammates better
understand each others’ actions, which is true for human-
human teams as well (Marks et al. 2002). A robot can make
itself more understandable to humans through legible mo-
tion (Dragan et al. 2015; Stulp et al. 2015), increased trans-
parency (Mercado et al. 2016), verbal feedback (St. Clair
and Mataric 2015), nonverbal cues (Breazeal et al. 2005),
revealing its incapabilities (Nikolaidis et al. 2017; Kwon,
Huang, and Dragan 2018), or cross-training (Nikolaidis and
Shah 2013). These previous works on human-robot team
performance typically assume a setting in which either the
human or robot (or both) has ground-truth knowledge of how
to perform the task optimally. In contrast, in our setting the
human and agent are learning together about the task.

Multi-Armed Bandit
Our user study focuses on a finite-horizon multi-armed ban-
dit problem. A K-armed bandit problem is defined by ran-
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Figure 3: The average total regret accumulated when col-
laborating with different agents. Overall, users perform sig-
nificantly better when paired with HA-UCB or 0.1-Greedy,
compared to 0.9-Greedy.

dom variables Xi,n for 1 ≤ i ≤ K and n ≥ 1. Each pull
of arm i yields a reward Xi,1, Xi,2, ... which are indepen-
dently and identically distributed with some unknown ex-
pected value µi. In our experiment, we used:

Xi,n =



0 w.p. λi,0
1 w.p. λi,1
2 w.p. λi,2
3 w.p. λi,3
4 w.p. λi,4

(1)

where λi is different and fixed over time for each arm, and∑4
j=0 λi,j = 1.
Intuitively, since the arms are unchanged over time, the

best strategy for maximizing reward is to always choose the
arm i which has the highest expected reward, µi = λi [0 1
2 3 4]T , where λi is the row vector of all probabilities for
arm i. Thus, we can evaluate different policies, or allocation
strategies, based on how much worse they are doing than
this optimal policy. If we define Ti(n) as total reward gained
from arm i in the first n plays, then we can define the regret
for some policy after n pulls as

µ∗n−
K∑
j=1

Tj(n) where µ∗ = max
1≤i≤K

µi (2)

The goal is to find a policy which minimizes the total regret.
Since we have no prior knowledge of which arm may be

the best, this introduces a classic exploration vs. exploita-
tion trade-off as previously noted. Many policies for this
problem have been explored; among these, the Upper Con-
fidence Bound (UCB) algorithm is simple and has a bound
on expected regret that is logarithmic in the number of pulls
(Auer and Fischer 2002).

UCB Policy
This policy starts by sampling each arm once. On each

subsequent pull n, it picks the arm i that maximizes

µ̄i +

√
2 lnn

ni
, (3)
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Figure 4: Left: Explicit influence is the fraction of time hu-
mans immediately change their decision to the agent’s sug-
gestion when the agent suggests a different action than the
human’s proposed action. On average, this happens only
once during the horizon of 30 pulls, so it cannot explain the
increase in performance for HA-UCB (Fig. 3). Right: Im-
plicit Influence is the difference between compatibility and
suggestion delay. Compatibility is how long it takes for hu-
mans in isolation to choose arms which agents would have
suggested. Suggestion delay measures how long it takes for
people to actually pick arms suggested by agents while be-
ing assisted by them. Here, we see HA-UCB significantly
changes human strategies more than other agents, since it
was initially incompatible with people, but it didn’t take
many iterations for people to take its suggestions.

where µ̄i is the average reward obtained from arm i and ni
is the number of times that arm has been played so far.

Horizon-Aware UCB Policy
While UCB has a good asymptotic bound on its regret,

it is possible for other agents to outperform it in short time
horizon problems, like the ones in our user studies.

One way to improve the performance of UCB on such
problems is to make it more greedy. Note that the vanilla
UCB algorithm always takes the arm which maximizes the
sum of two terms. The first term, µ̄i, represents exploita-
tion or greediness, since it is the average reward seen from
arm i so far. The second term,

√
(2 lnn)/ni, represents how

confident the algorithm is in its estimate of µi, which can
be thought of as an exploration term. Thus, to make UCB
more greedy, we can reduce the magnitude of this explo-
ration term.

In particular, we introduce a parameter γ which starts at 1
on the first pull and linearly decays to 0 for the last pull of
the time horizon. On each pull n, this new Horizon-Aware
UCB (HA-UCB) policy now picks the arm i that maximizes

µ̄i + γ

√
2 lnn

ni
. (4)

Decaying γ in this way means a HA-UCB policy will act
exactly like UCB on the first pull and exactly like a perfectly
greedy agent on the last pull. HA-UCB slightly outperforms
UCB on the tasks we consider (Fig. 2).

ε-Greedy Policy
ε-greedy policies pick the arm with the highest average re-

ward so far with probability 1-ε and pick a random arm with
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probability ε. We include one over-exploring agent (0.9-
Greedy) and one under-exploring agent (0.1-Greedy). In iso-
lation, 0.1-Greedy obtains lower regret than 0.9-Greedy, but
both have significantly higher regret than UCB and HA-
UCB (Fig. 2).

Experimental Design
User Study

We ran a user study in which participants played a game
with multiple slot machines (i.e., arms). Users collaborated
with different agents, that suggest which slot to pick at each
iteration. We introduced these agents as “robots” to users,
to concisely communicate that the suggestions were from a
non-human actor.

When collaborating with an agent, users are first asked
which slot they would like to play before seeing the agent’s
suggestion. After this, the user is shown the agent’s sugges-
tion via highlighting the slot(s) the agent would pick. If the
agent has no preference among multiple slots (for instance,
when greedy algorithms choose randomly), then all of those
slots will be highlighted. Once they see the suggestion, users
are free to select any slot.

Manipulated Variables
We manipulated the learning algorithm with five levels:

Unassisted, 0.1-Greedy, 0.9-Greedy, UCB, and HA-UCB.
We purposefully chose these agents to span the exploration
vs. exploitation spectrum. We used a within-subjects design
for this variable and counterbalanced the order.

Objective Measures
• Regret: The total regret accumulated after all n = 30

pulls.

• Inherent Compatibility: The amount of time it takes for
users in isolation to pick arms which each agent would
have suggested had they been assisting.

• Explicit Influence: The percentage of time the human’s
choice changes to the agent’s suggestion after seeing it.

• Implicit Influence: The difference between inherent
compatibility and how long users actually take to pick
arms that agents suggest.

• Decision Scores: The normalized score assigned by HA-
UCB to the decision made, based on the history of pulls
and rewards. This allows us to analyze users’ strategies
before and after getting assistance.

• Entropy: The entropy of the distribution over how often
users choose each arm; this measures whether they under-
explore or over-explore. A perfectly greedy policy will
have entropy 0, whereas a perfectly uniform policy (with
K = 6 arms as in the user study) will have entropy 2.58.

Subjective Measures
We also care about the users’ perceptions of the agents,

so we ask three Likert scale questions about whether they
trusted the agent, whether they thought the agent was useful,
and whether they followed the agent’s advice. We also ask

users to rank the agents in order of how much they enjoyed
collaborating with them.

Participants
We used Amazon Mechanical Turk to recruit a total of 52

users (33% female, mean age 33). Users were compensated
$3.75 for the study, which lasted approximately 20 minutes.
Users were also given up to a $1 reward depending on their
average payout across all collaboration settings. Users were
informed of this reward bonus before starting the study, in
order to incentivize them to pay attention and try their best.

Analysis
The team can be better than the best team member. In
isolation, UCB and HA-UCB perform the best in terms of
cumulative regret, scoring 23 and 22 respectively. Humans
in isolation perform similarly, getting an average regret of
23. ε-Greedy agents perform notably worse than this, with
0.1-Greedy and 0.9-Greedy getting regret of 36 and 40 re-
spectively (Fig. 2).

The performance of the human-agent team only improves
when people are paired with HA-UCB. This is expected, but
it is exciting to see that the team outperforms HA-UCB in
isolation (Fig. 3). Not only are people able to improve their
own performance, but the human-agent team—when paired
with the right agent—can do better than either humans or
agents in isolation. Interestingly, we find that particular indi-
viduals perform even better still (significantly) when paired
with HA-UCB; these are the individuals labeled “Group 1”,
which we will discuss later in this section.
Optimizing team performance is not the same as optimiz-
ing learning performance. We expected that in general, the
performance of the agent in isolation will have some corre-
lation with the performance of the human-agent team. But
even though the best agent led to the best team, the correla-
tion did not hold in general.

We ran repeated measures ANOVA for our objective mea-
sures of Regret and did post-hoc analyses with Tukey HSD.
We found that the learning algorithm factor has a significant
effect on Regret (F (3, 48) = 11.529, p < 0.01) and that
HA-UCB is significantly different from 0.9-Greedy (Tukey
HSD). One interesting result is that while HA-UCB only
outperforms UCB by 1 point in isolation, human-HA-UCB
teams significantly outperform human-UCB teams (Fig. 3),
by an average of 6 points. This sixfold increase in the differ-
ence in performance indicates that HA-UCB’s suggestions
were somehow more helpful and made more sense to peo-
ple than UCB’s, leading to people being able to make much
more informed decisions.

Another interesting result is that the team’s performance
can improve slightly (or at least remain unaffected) despite
pairing the human with a worse agent. UCB in isolation
outperforms .1-Greedy (Fig. 2) by an average of 13 points,
while the two human-agent teams perform very similarly.
0.1-Greedy even gets slightly lower regret by 2 points on av-
erage (Fig. 3). Though this difference is not statistically sig-
nificant, it stands in stark contrast to how much better UCB
performs than 0.1-Greedy in isolation.
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Statement 0.1-Greedy 0.9-Greedy HA-UCB UCB
“I trusted the agent” 4.2 ± 0.23 2.5 ± 0.20 4.8 ± 0.21 4.2 ± 0.25

“I thought the agent was useful” 4.1 ± 0.25 2.6 ± 0.22 4.8 ± 0.24 4.2 ± 0.27

“I followed the agent’s advice” 3.8 ± 0.25 3.5 ± 0.23 4.7 ± 0.25 4.0 ± 0.27

Rank [1: best, 4: worst] 2.5 ± 0.14 3.0 ± 0.13 2.0 ± 0.14 2.5 ± 0.15

Table 1: Post-study Likert ratings. Users prefer to work with HA-UCB significantly more than with other agents.
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Figure 5: Left: The entropy of the distribution over how of-
ten users and agents pick each arm in isolation as a function
of the number of pulls. Group 1 explores more fully initially
and then becomes greedy, Group 2 explores at the same rate
throughout. Curves for agents are averaged over 10,000 tri-
als. HA-UCB has a similar shape to Group 1 and 0.1-Greedy
has a similar shape to Group 2. Right: The percentage of
users who obtain their highest score with each agent. Most
users in Group 1 get their highest score with HA-UCB, while
nearly 40% of users in Group 2 get their highest score with
0.1-Greedy. The agents’ exploration strategies align with
the users’ strategies in these cases, which seems to improve
team performance.

Despite team performance not correlating to agent per-
formance in isolation, the users’ ratings did. Table 1 shows
the subjective measures: agents better in isolation are rated
higher.

These results indicate that simply improving an agent’s
isolated performance does not correlate with improving its
ability to assist humans. Assistance is more subtle, and we
explore what influences human-team performance in the re-
mainder of this section.
Agents have implicit (rather than explicit) influence. One
hypothesis for what causes the difference in team perfor-
mance is that agents convince people to change their mind,
going against their initial choice for an arm. However, when
we measure how often users change their mind to agree with
the agent’s suggestion after seeing it, we found no influ-
ence from the agents. Overall, the percent of time people
are explicitly influenced like this is close to 4% across all
agents, which corresponds to approximately one decision
over the user’s 30-decision time horizon (Fig. 4). It seems
unlikely that this one decision could affect the performance
of human-agent teams so drastically. But if people are not
changing their decisions to match the agent’s suggestions,
how are different agents leading to different team perfor-
mances?

What we found is that users’ initial choices are different
when interacting with the different agents: there is an im-
plicit influence that agents have, whereby the suggestions
agents make at one time point do not lead the person to ex-
plicitly change their mind about which arm they pull now,
but affect their choices in the future.

We measure this by looking instead at how long it takes
until people actually follow agents’ suggestions (Fig. 4). For
each agent, we look at how many pulls it takes each user
on average to ultimately pick the arms it suggests. We call
this the delay in accepting the agent’s suggestions. This is
an informative measure, but to understand the agent’s influ-
ence, we need to compare this to some baseline to under-
stand how much users’ decisions are actually changing. To
do this, we simulate the agents making suggestions based on
people’s decisions in isolation and similarly measure how
long it takes for people to choose arms which the agents
would have suggested. We refer to this as a user’s compat-
ibility with each agent, since it tells us how quickly users
would have taken agents’ suggestions regardless. We refer
to the difference between the delay in accepting the agent’s
suggestions and the human’s compatibility with that agent
as the agent’s implicit influence.

We ran repeated measures ANOVA for our objective mea-
sures of Regret and did post-hoc analyses with Tukey HSD.
We found significant effects for the learning algorithm on
Implicit Influence (F (3, 48) = 122.04, p < 0.0001). HA-
UCB had higher influence than UCB and 0.1-Greedy (Tukey
HSD). Finally, we found significant effects for the agent as-
sistance factor (assisted or unassisted) on Implicit Influence
(F (1, 48) = 13.45, p = 0.0004).

When not assisted by any agent, people are most similar
to the 0.1-Greedy agent, only having about a 2 pull delay be-
fore they choose what it would have suggested. In contrast,
users take around 5 or 6 pulls before picking what the other
agents would have suggested. When people are actually see-
ing agents’ suggestions, this average falls across the board.
This tells us that although agents do not explicitly change
users’ minds, their suggestions have an implicit influence on
their strategies going forward.

When viewed from this lens, we do actually see a dif-
ference in influence between the agents! The time it takes
for users to take HA-UCB’s suggested arms goes down by
the largest fraction of all the agents. With no assistance,
people take on average 5.4 pulls before taking what HA-
UCB would have suggested, whereas people actually take
less than 2 pulls on average before pulling arms which it ac-
tually suggested. In contrast, there is little difference here
for 0.1-Greedy between the unassisted and assisted settings:
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people take about 2.5 pulls before following its decisions in
both cases (Fig. 4). The other agents (UCB and 0.9-Greedy)
see a slight improvement, but not nearly as large as that of
HA-UCB.

Though we see that HA-UCB has the most implicit in-
fluence on people, they do not directly take its suggestions
very often. Instead, they are influenced to change their over-
all strategy after seeing its suggestions.
People perform better with agents that are more like
them. Next, we turned to understanding what might be re-
sponsible for this difference in influence. We looked at unas-
sisted users first and plotted the entropy of the distribution
of arms they had selected up to each time step. We found
that users naturally fell into two distinct groups. Users were
manually separated into these groups and no users were ex-
cluded. 21 users were placed into Group 1 and 31 into Group
2.

As we see in Fig. 5, people in Group 1 will initially ex-
plore all or almost all arms as evident by the entropy steadily
increasing to the maximum entropy 2.58. The entropy then
steadily decreases, indicating that users will settle on one or
two arms to continue pulling for the remainder of the time
horizon. In contrast, Group 2 will continue to explore all
arms at approximately the same rate for the entirety of the
time horizon, as evident by the entropy curve increasing to
and leveling out at 2.4.

Remarkably, if we look at which agent each person in
these groups got their personal high score with, there is a dis-
tinct difference between them. As shown in Fig. 5, a majority
of users in Group 1 (57%) get their highest score when col-
laborating with HA-UCB, whereas only only 16% of users
in Group 2 do. In contrast, only 7% of users in Group 1 get
their highest score when collaborating with 0.1-Greedy as
compared with 39% of users in Group 2. Now, if we plot
the entropy curves for these two agents in isolation averaged
over 10,000 trials (Fig. 5), we see the shapes tend to corre-
spond with those of the two groups. This lends credence to
the idea that users perform best when being assisted by an
agent which acts like them.

We see that Group 1, which matches HA-UCB, reduces
regret to 16 when assisted by HA-UCB, which is far lower
than even HA-UCB’s performance (regret 22). While we do
not make statistical claims, people have a better sense of
what the best arm looks like (in terms of average reward),
whereas HA-UCB starts with no information. With HA-
UCB assisting, people are inclined to explore arms which
they would not have on their own, so the team in total is bet-
ter able to identify the best arm than either would have in iso-
lation. The same group performs worse with 0.1-Greedy, de-
creasing performance also when compared to how well these
users did in isolation. Particularly surprising is that more
Group 2 users perform better with 0.1-Greedy than with HA-
UCB, despite HA-UCB being the better algorithm. Group 2
performs slightly better when assisted by 0.1-Greedy than
when unassisted, whereas Group 1 performs worse.1

1On the surface, this analysis seems to contradict that the aver-
age total regret accumulated by Group 2 when collaborating with
HA-UCB is not significantly different from when collaborating

Statement Group 1 Group 2
“I trusted the agent” 3.4 ± 0.35 4.5 ± 0.27
“I thought the agent was useful” 3.2 ± 0.47 4.4 ± 0.28
“I followed the agent’s advice” 2.7 ± 0.42 4.2 ± 0.28
Rank [1: best, 4: worst] 3.0 ± 0.25 2.3 ± 0.17

Table 2: Post-study Likert ratings for 0.1-Greedy. (Differ-
ences between the two groups were negligible for other
agents.) Group 2, who performs better when collaborating
with 0.1-Greedy, overall has a positive view of the agent
while Group 1 has a negative view.

When looking at the subjective measures split by groups,
we find that they disagree in their opinion of 0.1-Greedy.
Group 1, who is more aligned with HA-UCB, rates the 0.1-
Greedy much lower than Group 2 (Table 2).

Overall, we find that people have different strategies, and
many of them team up best with agents that match their strat-
egy. We found it striking that 39% of people with the greedy-
like strategy perform best with greedy, whereas only 16% of
them perform best with HA-UCB, and this is in spite of HA-
UCB’s superiority in isolation.

Discussion and Future Work
We saw that human-agent teams can outperform humans and
agents in isolation. But our analysis suggests that achiev-
ing this, or even just improving upon human performance,
is much more subtle than we expected. The agent’s sugges-
tions do not change a person’s decisions explicitly, but rather
influence their later decisions. Further, people benefit differ-
ently from different agents, depending on the similarity be-
tween their strategy and the agent’s.

These results show that helping a person manage explo-
ration exploitation trade-offs is distinct from directly making
those trade-offs. We can alternatively formulate this prob-
lem as a cooperative game between the human and the
robot (Hadfield-Menell et al. 2016), where both the robot
and the human are optimizing to maximize the cumulative
reward from the human’s arm selections. Crucially, the robot
is forced to operate through making changes to the human’s
internal or information state. In future work, we plan to
explore this formulation of the problem and develop algo-
rithms that leverage models of human internal state to make
helpful suggestions and work with humans to explore and
exploit appropriately to maximize long term reward.
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Figure 6: The y-axis shows the normalized score assigned by HA-UCB to the decision made, based on the history of pulls
and rewards. Left: The average scores obtained by human strategies in isolation. Middle: The average scores obtained from
humans’ initial choices while collaborating with each agent. Right: The averages scores obtained from humans’ final choices
while collaborating with each agent. Note that the scores are highest for HA-UCB and that the curves are different for people
when collaborating with an agent versus in isolation, meaning that their strategies are altered.

Appendix: Strategies With and Without
Assistance

A second way we analyzed implicit influence is by look-
ing at the (normalized) score that HA-UCB assigns to the
users’ initial and final choices given the history of pulls
(Fig. 6). Though the scores people get here do not neces-
sarily correlate with their regret, we can use this to mea-
sure whether human strategies are changing. If strategies
were not being influenced by agents, we should expect these
scores to stay approximately the same. However, we see that
the curves for humans in isolation are significantly different
from those when collaborating with agents. Again, this tells
us that agents influence people’s decisions implicitly rather
than explicitly.

8


