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Abstract

Inferring a person’s goal from their behavior is an important
problem in applications of AI (e.g. automated assistants, rec-
ommender systems). The workhorse model for this task is the
rational actor model - this amounts to assuming that people
have stable reward functions, discount the future exponentially,
and construct optimal plans. Under the rational actor assump-
tion techniques such as inverse reinforcement learning (IRL)
can be used to infer a person’s goals from their actions. A com-
peting model is the dual-system model. Here decisions are the
result of an interplay between a fast, automatic, heuristic-based
system 1 and a slower, deliberate, calculating system 2. We
generalize the dual system framework to the case of Markov
decision problems and show how to compute optimal plans for
dual-system agents. We show that dual-system agents exhibit
behaviors that are incompatible with rational actor assump-
tion. We show that naive applications of rational-actor IRL
to the behavior of dual-system agents can generate wrong in-
ference about the agents’ goals and suggest interventions that
actually reduce the agent’s overall utility. Finally, we adapt
a simple IRL algorithm to correctly infer the goals of dual
system decision-makers. This allows us to make interventions
that help, rather than hinder, the dual-system agent’s ability to
reach their true goals.

Introduction
Modeling human decision making and inferring a person’s
latent reward function from their behavior are important
problems across many fields.1 Typically such inference is
performed using the rational actor model. The rational actor
model assumes that people have a fixed utility function (aka.
reward function), discount the future exponentially, and that
they are capable of planning. Assuming the rational actor
model means that if we know a person’s reward function we
can predict their behavior they will take by using dynamic
programming to find (approximately) optimal plans (Sutton
and Barto 1998). Similarly, if we have observations of a per-
son’s behavior we can invert this behavior to learn the goals
they are trying to achieve (Ng, Russell, and others 2000;
Ziebart et al. 2008).

1Important applications of these techniques include goal recog-
nition (Keren, Gal, and Karpas 2014), AI/human cooperation
(Hadfield-Menell et al. 2016), and many products such as artifi-
cial assistants, and recommender systems.

Unfortunately, it is well known that the rational actor
model fails in many important decision environments (Thaler
2012). The goal of this paper is to ask whether the tools of
planning and inverse planning can be applied to the dual-
system model (2S) (Kahneman 2011), a workhorse model of
human decision-making from the behavioral and cognitive
sciences.

The 2S views behavior as being controlled by two sys-
tems, system 1 which is automatic, fast, effortless and
uses heuristics and system 2 which is slower, reflective,
requires cognitive costs and deliberates. We will follow
existing work in neuroscience and assume the interaction
between systems as proceedings as follows: when faced
with a decision first system 1 ‘suggests’ a course of ac-
tion and system 2 uses costly cognitive control to mod-
ulate this suggestion (Hare, Camerer, and Rangel 2009;
Shenhav, Botvinick, and Cohen 2013).

An important example of violations of the rational actor
model occur in situations where people must trade off rewards
now for rewards later (Ainslie and George 2001). People plan
to eat healthy, go to the gym, and quit smoking tomorrow but
when tomorrow comes, they reverse their plans (O’Donoghue
and Rabin 1999; DellaVigna and Malmendier 2006; Thaler
and Shefrin 1981). Patterns of choices where one alternative
is chosen when the choice is made for the future but the other
is chosen when the choice is made for immediate outcomes
(e.g. committing to start eating healthy tomorrow but having
a donut today) are called dynamically inconsistent. Dynamic
inconsistency cannot occur if individuals are indeed maxi-
mizing a stable utility function which discounts the future
exponentially (O’Donoghue and Rabin 1999).2

The 2S model states that time inconsistency arises because
decisions are an interplay between a system 1 that seeks
immediate gratification and a system 2 that is able to consider
long term impacts of decisions (Thaler and Shefrin 1981;
McClure et al. 2004; Fudenberg and Levine 2006). When
decisions are only about the future, system 2 wants to commit

2Another pattern of real world behavior that points to violations
of the rational actor model is the presence of commitment devices
(Bryan, Karlan, and Nelson 2010; Peysakhovich 2014). People are
willing to pay to remove choices from their choice sets (e.g. pay
a personal trainer to force them out of bed at 6am for a workout).
A rational agent (who can simply choose to follow through on any
plans made yesterday) would never make such a decision.



to eating healthy and going to the gym but when the donut is
in front of us system 1 makes it hard to put down.

This paper asks: what happens when decisions are not be-
tween single actions but in temporally extended plans? We
build a computational model of the 2S planning as follows:
the decision-maker faces a Markov decision problem and the
resulting choices are a product of system 2 optimizing some
utility function net of cognitive control costs. The cognitive
control cost of a decision is proportional to how much it de-
viates (in terms of disutility) from an optimal decision that
system 1 would like to make.3 System 1 and system 2 have
different utility functions, discount the future differently, or
both. This conflict gives rise to time inconsistent behaviors as
well as other violations of rationality. The model presented
here nests existing work such as the dual-self (Fudenberg
and Levine 2006), and self-control preferences (Gul and Pe-
sendorfer 2001). It can also be thought of as a converged
version of a µAgent model (Kurth-Nelson and Redish 2009).

There are four contributions in this paper. First, existing
models (Gul and Pesendorfer 2001; Fudenberg and Levine
2006) assume that system 1 is perfectly myopic (aka. cares
only about immediate rewards). Our work extends these mod-
els to a system 1 capable of anticipating future consequences
of a decision today. Second, we show that standard tools
from reinforcement learning can be used compute optimal
policies in Markov decision problems for 2S agents. Third,
we show how inverse reinforcement learning (Ng, Russell,
and others 2000; Ziebart et al. 2008), applied naively, can
grossly mislead an analyst trying to learn a 2S agent’s goals
from their behavior. Fourth, we adapt a simple IRL algorithm
to test for dual-self decision-making or to recover the goals
of a dual-self agent from observed behavior.

Related Work
One way to model preference reversals in say that individ-
uals have hyperbolic (Ainslie and George 2001) or quasi-
hyperbolic (Laibson 1997; O’Donoghue and Rabin 1999) dis-
count rates (i.e. they value x utils in the future as a function
such as 1

1+tx instead of δtx). In hyperbolic/quasi-hyperbolic
models models the effective discounting from waiting from
t = 0 to t = 1 is larger than the loss from waiting from
t to t + 1. These models display preference reversals, pro-
crastination, and other ‘irrational’ phenomena (O’Donoghue
and Rabin 1999). Making dynamic predictions in such mod-
els require solving a game between multiple ‘selves’ of an
individual that exist at each time period (Laibson 1997;
O’Donoghue and Rabin 1999; Kleinberg and Oren 2014;
Kleinberg, Oren, and Raghavan 2016; Evans, Stuhlmüller,
and Goodman 2016).

By contrast, 2S models assume the existence of multi-
ple ‘selves’ (or systems) that exist consistently across peri-
ods (Kurth-Nelson and Redish 2010; Fudenberg and Levine
2006). Systems can have different utility functions (Hare,

3Throughout the paper language like ‘desires’, ‘beliefs’, and
‘conflict’ will be used to anthropomorphize system 1 and 2. This
is not meant to imply the existence of homunculi literally fighting
within an individual’s head, rather the language is used to convey
intuitions behind concepts.

Camerer, and Rangel 2009), discount the future differently
(Fudenberg and Levine 2006; Kurth-Nelson and Redish 2010)
or have different information sets (Kool, Gershman, and
Cushman 2018). In each of these models decisions involve
some way of combining inputs from these two systems, and
they can generate time inconsistent behavior and even dis-
counting patterns that look very similar to those of a hyper-
bolic discounter (Kurth-Nelson and Redish 2010).

There are two major advantages of the 2S framework. First,
is that it can be applied to decision environments beyond
those where decision-makers must trade off rewards now
for rewards later. There is strong evidence that system 1
and system 2 appear to differ in their evaluations of many
other decisions such as risk/uncertainty (Hsu et al. 2005),
whether to be altruistic (Rand, Greene, and Nowak 2012;
Peysakhovich and Rand 2015), and moral decisions (Greene
2014). Second, 2S systems give a consistent welfare crite-
rion - they can identify whether an intervention improves or
decreases an individual’s utility unambiguously (provided
we assume system 2 utility is an individual’s true utility).
Because hyperbolic models assume games between different
selves at different time periods asking whether an interven-
tion made an individual better off requires asking which time
period’s ‘self’ we care about (O’Donoghue and Rabin 1999).

Finally, a growing literature argues that a key distinction
between system 1 and system 2 is how they learn (Kool,
Gershman, and Cushman 2017; 2018). Kool, Gershman, and
Cushman argues that system 1 is best modeled as a model-
free reinforcement learner while system 2 is more like a
model-based planner. While we do not deal with the dy-
namics of learning in this paper this conception provides a
plausible foundation for the assumption that system 1 and
system 2 try to maximize different rewards. For example,
after trying a few donuts a model free system 1 may learn
that donuts are delicious. However, system 1 will not inter-
nalize the negative reward of not following a diet because
this negative consequence is far into the future. On the other
hand, the model-based system 2 can incorporate this reward
into it’s calculation of an optimal plan. Such dual-system
learning patterns have been observed in real world decision-
making where information that is personally experienced
(e.g. having one’s stock portfolio collapse during a recession)
has a different effect on decisions than information that is
simply learned symbolically (Malmendier and Nagel 2011;
Hertwig and Erev 2009).

Basics of the 2S Model
We will introduce the 2S model with a simple example and
then expand it to Markov decision problems. Consider a
decision-maker (DM). The DM is on a diet and is choosing
between a delicious but unhealthy donut (d) and a healthy
but less flavorful kale smoothie (k) as a snack.

The decision-maker has 2 reward functions r1 and r2
which represent systems 1 and 2 respectively. System 1 likes
sugar whereas system 2’s goals include the higher level goal
of maintaining the diet. This is formalized as r1(k) = 0 and
r1(d) = 1 whereas r2(k) = 1 and r2(d) = −1.

First we consider the DM making a choice for eating the
snack right now. Let a∗ be the system 1 optimal action (eat



the donut). The cognitive control cost of deviating to another
action a by system 2 is given by

CC(a) = ψ(r1(a∗)− r1(a)).

For simplicity let ψ be a linear function. System 2 trades
off its reward and this cognitive control cost, so choices are
maximizers of the combined function

VDS(a) = r2(a)− ψ(r1(a∗)− r1(a)).

Plugging in the rewards above gives VDS(d) = −1 and
VDS(k) = 1− ψ(1)

It is easy to see that in this case the DM chooses the kale
smoothie iff the cognitive control cost parameter ψ ≤ 2.

Now let us consider the case where the DM is choosing
a snack now but will eat it tomorrow (t = 1). Rewards are
received at the time the snack is eaten and system 1 and 2
discount future rewards are discounted by rates γ1 < γ2.
System 1 still prefers the donut but now the control cost of
deviating is ψ(γ1r1(a∗)− γ1r1(a)). Again the choice is the
maximizer of the system 2 utility net of control costs, but
now the DM chooses kale when ψ ≤ 2γ2γ1 .

Thus, there is a range of cognitive control parameters
[2, 2γ2γ1 ] where agents choose donuts today, but, if they are
able to, commit to eating kale tomorrow.

Planning with Two Systems
So far we have dealt with a single decision, however, we can
consider a 2S DM making a dynamic choice. Suppose that at
t = 1 a donut will be available for lunch and the DM can pay
some price at time t = 0 for kale to be available at t = 1 as
well. Would the DM be willing to pay this price? There are
several factors to consider. First, if ψ > 2 then even if kale
is available the DM would not choose it at t = 1, thus DM
would not be willing to pay at t = 0. Second, even if the DM
would choose kale system 2 must factor into the price the
cognitive control costs the DM will have to pay in the future
to actually make the choice. Third, if the DM will indeed
choose kale at t = 1 system 1 would prefer that the DM does
not make kale available - in other words, in the 2S model
there is now a conflict at t = 0 because of the anticipation of
conflict at t = 1.

A Markov decision process (MDP) is a finite set of state
S, a set of actions A, a transition function which inputs a
state and action and outputs a distribution on the next states
τ : S × A → ∆(S). A 2S DM has two reward functions
which input a state and action pair and output a distribution on
real valued rewards ri : S ×A → ∆(R). Systems discount
the future with discount rates γ1, γ2.

We now extend the 2S model to MDPs with the formal-
ization. Our DM will be choosing a policy π which is a map
from states to actions (this can be randomized but in this
paper we restrict to deterministic policies). Each system has
a value function Vi(s, π) which inputs a starting state s and
a policy π and outputs the expected sum of discounted re-
wards from behaving according to this policy starting in this
state. A related object is each system’sQ functionQi(s, a, π)
which takes as input a state, action, and policy and gives the
expected discounted sum of rewards from taking action a
today and following policy π starting at the next period.

Each system has an optimal policy it would prefer, we refer
to these as π∗1 , π∗2 . However, behavior will come from system
2 optimizing its reward function net of cognitive control costs.
We call the resulting policy the compromise policy. We now
turn to understanding what function this policy will actually
optimize.

First, we need to ask how to calculate cognitive control
costs when we think about policies rather than single actions.
As before there is a tradeoff equation for system 2 given by

VCC(s, π) = V2(s, π)− CC((s, π)).

We will continue to think about the control costs as the dif-
ference between utility gained to system 1 under π and π∗1 as
with the single action case. However, now a choice at time t
now affects rewards at t+ k and we need to make decisions
about how system 1 perceives the future.

Again, actions are taken at each time step. Let us consider
the model where system 1 suggests an action π∗1(s). What
should the cost be for deviating to a different action?

We now discuss two possible assumptions. We refer to
them as the naive or sophisticated system 1.4

The naive system 1 assumption is that actions starting
tomorrow will follow π∗1(s) (i.e. system 1 is ignorant of
system 2’s future plans). A naive system 1 means that the
control cost along a trajectory can be computed via the Q
function of system 1. The per period reward to system 2 net
of control costs can be written as

r2(s, a)− ψ(Q1(s, π∗1(s), π∗1)−Q1(s, a, π∗1)).

We can thus write the planning problem in standard recursive
form

V naiveCC (s, π) = r2(s, π(s))−
ψ(Q1(s, π∗1(s), π∗1)−Q1(s, a, π∗1))+

γ2V
naive
CC (s, π).

Standard RL methods (value iteration, policy iteration) can
be used to find the policy which optimizes this function: first
we compute Q∗1 using a standard method, then we plug in Q∗1
and again apply policy iteration/value iteration to compute
the which optimizes V naiveCC .

The sophisticated system 2 model is more nuanced. Here
system 1 understands that future actions will come from π
instead of π∗1 and so we write the optimizing function net of
control costs as

V sophCC (s, π) = V2(s, π)− ψ(V1(s, π∗1)− V1(s,π)).

The sophisticated formulation is related to the interpretation
of 2S model in (Thaler and Shefrin 1981; Fudenberg and

4We will use the naive/sophisticated language of the literature
on hyperbolic discounting (O’Donoghue and Rabin 1999). In that
literature actions of a self in period t depend on expectations of
that self about the actions of future selves. Naive agents are those
who assume future selves will make the same decisions as the
current self, sophisticated agents are those who play a subgame
perfect equilibrium (i.e. know that future selves will take actions to
maximize their own utility).



Levine 2006) where actions are split between a planner and
a doer where the only action of the planner is to be able to
change the utility function of the doer. In the Markov case
this would amount to assuming that the agent starts in state s,
the planner gets to change the doer’s utility function (reward
function for each state, action), and the doer chooses the
policy consistent with this new utility function.

This no longer has a simple recursive form because V1 and
V2 have different discount rates. However, we now show that
policy iteration can be used even in this compound problem.
First, we substitute the definitions of the value functions into
the equations above to re-express V sCC as

r2(s, π(s)) + ψr1(s, π(s))+

γ2V2(τ(s, a), π) + ψγ1V1(τ(s, a), π)−
ψV1(s, π∗1)

At each state the optimal policy value for system 1
V1(s, π∗1) is a constant. Thus, we can ignore it for the sake
of computing the optimal policy starting at that state (though
not for computing that policy’s actual value). This means that
the sophisticated system 1 policy is the one which optimizes
the compromise objective V2(s, π) + ψV1(s, π). This also
means the cognitive-control based 2S model is a plausible
foundation for the µAgent model (Kurth-Nelson and Redish
2009). An adaptation of the value iteration algorithm can be
used to construct an optimal policy (Algorithm 1). As with
standard value iteration, this algorithm is monotonic (each
step has a better policy with respect to the compromise ob-
jective) and thus when the MDP is finite it will converge to
the optimal policy.

Note that while standard techniques can be adapted to con-
struct plans for sophisticated system 1 agents their policies
no longer have a single associated value function that can
be written in standard recursive form. Because system 1 and
system 2 have different discount rates the compromise policy
may exhibit behaviors like time inconsistency or commit-
ment. Time inconsistency occurs because when an action
affects rewards arbitrarily far in the future the discount rate
of system 2 is the only relevant one and thus these decisions
will look as if they optimize only for r2 while decisions that
affect rewards close in time optimize for a combination of r1
and r2.

Algorithm 1 Value Iteration With Sophisticated System 1

Initialize V1, V2 arbitrarily
while Not converged do

for s ∈ S do
for a ∈ A do

Q1(s, a) = E(r1 | s, a) + γ1V1(τ(s, a))
Q2(s, a) = E(r2 | s, a) + γ2V2(τ(s, a))

Let a∗ = argmaxaψQ1(s, a) +Q2(s, a)
Set Vi(s) = Qi(s, a

∗)

With sophisticated 2S planning in hand, we can move on to
examining examples of behavior of 2S agents as well as the
differences between sophisticated and naive system 1 agents.

Inverting Dual System Plans
We now turn to the problem of inferring an agent’s reward
function from observed behavior. This problem is particularly
important if we seek to construct AI that can observe human
behavior, infer their desired goal states, and then take actions
to help the DM achieve their goals as in, e.g. an artificial
assistant.

We consider the standard inverse reinforcement learning
(IRL) setup. We have access to a dataset of trajectories (se-
quences of state-action pairs taken by our agents). We refer
to this as D = {η1, η2, η3 . . . ηN}. We wish to use D to infer
the underlying reward function(s) of the DM. In addition,
we wish to provide a statistical test for the presence of dual-
system behavior in a data-set.

We will do this using maximum likelihood estimation as in
prior work (Ziebart et al. 2008). We let θ be the parametriza-
tion of the problem (here the reward function or functions).
Our goal will be to find the reward parameters θ to maximize
the likelihood of the data. The Markovian property of MDPs
means that the likelihood of a trajectory ηi can be computed
as

Pr(ηi | θ) =
∏

(s,a)∈ηi

Pr(a | s, θ).

We will work with the log likelihood instead which will be

L(D | θ) =
∑

(s,a)∈D

logPr(a | s, θ).

With rational agents it is straightforward how to compute
L. Given θ the agent has an optimal policy which has an
associated Q function. We refer to this as Q∗(s, a | θ). We
assume that choices at each state are made according to a
softmax of this Q∗ function

Pr(a | s, θ) =
exp( 1

βQ
∗(a, s | θ))∑

a′ exp( 1
βQ
∗(a′, s | θ))

.

Thus the loglikelihood is well defined.
We now turn to, given a guess θ calculating the likelihood

of observed trajectories for 2S agents. We begin with the
naive system 1 agents. This is the easier of the two cases.
Recall that here we can think of this agent as a rational
agent which optimizes a new reward function which takes
the discounted (with system 2 discount rate) payoffs of the
form

rnaive(s, a) = r2(s, a)− ψ(V ∗1 (s)−Q∗1(s, a)).

Thus we can readily compute a Qnaive∗CC function if we can
compute the optimal policy. This gives us a well defined
likelihood for any trajectory.

For sophisticated system 1 agents the problem is a little
bit more complicated. Recall that a sophisticated system 1
agent’s final policy also optimizes the compromise value func-
tion V2(s, π) + ψV1(s, π). We can can write the associated
Q function as

QsophCC (s, a, π) = r2(s, a) + r1(s, a)+

γ2V2(τ(s, a), π) + γ1V1(τ(s, a), π).

Given the policy π∗soph we can compute this Q function
and plug it into the softmax equation above. Now we have a
well defined likelihood given the parameters θ.



Experiment: Donut Kale Grid World
We consider a Markov grid world. An agent begins in a
location and can move in any of 4 cardinal directions. There
are two items placed on the grid, a kale smoothie and a donut
(see Figure 1). The donut and kale are terminal states of the
game. The donut and kale have rewards for system 1 and
system 2 as in the example above. We set γ2 = .99, γ1 =
.6, ψ = 5.

Figure 1: Top row shows the trajectories of system 1 and
system 2 starting from the corner as well as the full preferred
policies of both systems. Each arrow indicates the direction
the agent will move at that state. States are colored red if
starting at that state leads to the donut and green if it leads to
the kale. Bottom row shows the compromise policies under
the 2S model with naive/sophisticated system 1. The compro-
mise policies are not pure mixtures of the optimal policies
and display behavior such as precommitment (walking far
away from the donut to make it harder to reach in the future).
Last subpanel shows functions for each of the systems given
compromise policies as well as the map of self control costs
incurred by the DM in each state under the naive assumption

Figure 1 shows the world as well as the trajectories starting

from the corner of the board. The ideal policies of system
1 (grab the donut) and system 2 (walk to the kale using the
shortest possible path). However, the compromise policies
look quite different from either optimal policy. Indeed, both
of them take a path around the donut (but not the shortest
possible path). We see the naive and sophisticated system 1
policies differ quite a lot with the compromise policy with
the naive system 1 demonstrating giving the donut a very
wide berth.

The difference in final behavior under the
naive/sophisticated assumptions comes down to the
following logic. Consider a simple problem where the DM
chooses between 2 actions Stop and Go at t = 0. If the
agent Stops the game ends, otherwise it continues to t = 1
where the agent also chooses between Stop and Go. If the
agent chooses Stop, the game ends, if the agent chooses
Go, he gets a donut. System 1’s optimal policy is to Go at
both stages and eat the donut. Suppose the cognitive control
parameters are such that agents Stop in period t = 1 (with a
control cost). A sophisticated system 1 then knows at t = 0
that the agent will stop and therefore there is no control
cost for Stop in period 0. However, a naive system 1 always
assumes that the agent will Go in the future and therefore
there will be a control cost at period 1. This reasoning is
precisely why the DM in the grid world gives the donut a
wide berth under the naive system 1 assumption but walks
exactly one step away under the sophisticated assumption.

Whether the naive or sophisticated model of cognitive
control is more reflective of real decision-making is an open
empirical question (though cognitively it seems like the naive
assumption is more plausible), however, because the models
give such precise predictions about the main differences it is
an empirically testable one and a potentially fruitful direction
for future research.

Experiment: IRL in the Donut Kale Grid
World

We now apply the IRL methods above to the Donut Kale grid
world problem. We keep the same true underlying problem
parameters and use the true value functions to construct a
dataset of stochastic trajectories starting from any possible
(non-terminal) state. We construct datasets of stochastic tra-
jectories for both kinds of dual system agents. We sample
50 stochastic trajectories using softmax choice of actions at
each time point with β = .01 starting from any possible non-
terminal state. We give models access to the true discount
rates. We use a large number of trajectories as well as the
true discount rates because the purpose of this experiment is
to show that rational IRL draws problematic inferences even
when it has access to large amounts of data and true discount
rates. We refer to these data sets as Dnaive and Dsoph.

For each of the different assumptions on the true plan-
ning function (rational, sophisticated, naive) optimization
of the IRL likelihood function is relatively slow (because
each iteration requires the computation of an optimal policy).
In these experiments we found that the IRL objective func-
tions are very difficult to optimize, methods that improved
the likelihood function only locally ended up finding very



poor minima and we ended up using differential evolution to
optimize the likelihood (Storn and Price 1997). In standard
rational IRL there exist assumptions which allow for closed
form solutions to gradients at each optimization step (Ziebart
et al. 2008). Unfortunately these assumptions do not hold
in the 2S case, and so an open area for future research is
the efficient computation of solutions to dual-system IRL
models.

We the rational, sophisticated, and naive IRL models using
maximum likelihood estimation on the generated datasets.
We find that a rational IRL model recovers that both 2S agents
like donuts (this is because if the DM starts close to the donut
then they eat it, thus the only way to rationalize this is to have
positive reward from the donut). Thus, using rational IRL
would lead a designer to make wrong decisions if they could
make interventions (for example, if they are asked whether
the DM would prefer a donut or nothing).

Second, we find that correctly specified models learn the
underlying preferences quite well. Both the naive and sophis-
ticated IRL learn that only system 1 prefers donuts. Things
are more mixed when we examine misspecified 2S IRL mod-
els. The naive IRL model applied to the sophisticated data
yields wrong inferences just like the rational model, however
the sophisticated model applied to the naive data gets the
order of preferences correct.

Conclusion
This work has focused on extending planning and inverse
planning models into the domain of non-rational agents. In
particular we have focused on the dual system framework
that has proven to be sucessful across the behavioral sciences.
We have shown that standard planning and inverse planning
algorithms can be adapted to 2S agents. Importantly we have
shown that incorrectly assuming that a dual-system agent
is a rational agent when trying to infer goals from behavior
can lead to interventions that actually decrease the overall
welfare of the agent.

There are many open questions remaining beyond this
paper. First, we have explored two potential assumptions
for how system 1 anticipates the future actions of system 2.
These give different behavioral predictions. Empirical tests
of these assumptions are important for moving forward in
both model building and applying these insights to reality.

We have assumed that both system 1 and system 2 have
fixed reward functions and use model-based methods for com-
puting optimal polices. In reality, both systems are constantly
learning about the real world. Existing work (Kool, Gersh-
man, and Cushman 2017; 2018) argues that these systems
learn and plan differently with system 1 being more model-
free and system 2 being more model-based. Extending the
2S model presented here to include learning is an important
future direction.

We have focused on the domain of time inconsistency but
system 1/system 2 conflicts occur in many other domains.
Extending the model here to problems in moral decision-
making, decision making under risk and uncertainty, and
cooperation sees like a fruitful direction for future research.

Finally, rational actor models are used explicitly or im-
plicitly across many applications (a large literature in recom-
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Figure 2: Rational IRL makes incorrect inferences about the
decision-maker’s preferences (d1, d2, k1, k2 refer to inferred
rewards of donuts, kale for system 1 and system 2 respec-
tively). However, 2S IRL models with correct specification
learn that only system 1 likes donuts (i.e. d1 > 0, d2 < 0).
Misspecification is more of a mixed bag with the sophisti-
cated model learning the correct preferences when applied
to the naive dataset but the naive model inferring the wrong
answer. Lines reflects averages over 16 replicates, error bars
reflect standard deviations.

mender systems can be framed as a form of learning latent
preferences). Understanding where such models are appropri-
ate and where the assumptions are so badly broken that they
lead to false conclusions is an important topic for discussion,
research, and debate.
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