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Abstract
Although interactive learning puts the user into the loop, the
learner remains mostly a black box for the user. Understand-
ing the reasons behind predictions and queries is important
when assessing how the learner works and, in turn, trust. Con-
sequently, we propose the novel framework of explanatory
interactive learning where, in each step, the learner explains
its query to the user, and the user interacts by both answer-
ing the query and correcting the explanation. We demonstrate
that this can boost the predictive and explanatory powers of,
and the trust into, the learned model, using text (e.g. SVMs)
and image classification (e.g. neural networks) experiments
as well as a user study.

Introduction
Trust lies at the foundation of major theories of interper-
sonal relationships in psychology (Simpson 2007). In par-
ticular, Hoffman and others (2013) argue that interpersonal
trust depends on the “perceived competence, benevolence
(or malevolence), understandability, and directability—the
degree to which the trustor can rapidly assert control or influ-
ence when something goes wrong.” They and others (Waytz
and others 2014; Wang and others 2016) also show that
trust into machines follows similar patterns, with some no-
table differences: it is often inappropriate to attribute benev-
olence/malevolence to machines, and trust into machines
suffers from different biases than trust into individuals. The
differences, however, do not affect the argument that inter-
action and understandability are central to trust in machine
learners, too. The competence of a classifier can be assessed
by monitoring its behavior and beliefs over time, directabil-
ity can be achieved by allowing the user to actively teach the
model how to act and what to believe, while understandabil-
ity can be approached by explaining the model’s decisions.

Surprisingly, the link between interacting, explaining and
building trust has been largely ignored by the machine learn-
ing literature. On one hand, existing approaches focus on
passive learning only, and do not consider interaction be-
tween the user and the learner (Bucilu and others 2006;
Ribeiro and others 2016; Lundberg and others 2016). On
the other hand, interactive learning frameworks such as ac-
tive (Settles 2012) and coactive learning (Shivaswamy and
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others 2015) do not consider the issue of trust. In active
learning, for instance, the model presents unlabelled in-
stances to a user, and in exchange obtains their label. This
is completely opaque: the user is oblivious to the model’s
beliefs and reasons for predictions and to how they change
in time, and cannot see the consequences of her own instruc-
tions. In coactive learning, the user sees and corrects the sys-
tem’s prediction, if necessary, but the predictions are not ex-
plained to her. So, why should users trust models learned
interactively?

To fill this gap, we propose the novel framework of ex-
planatory interactive learning (XIL). Here the interaction
takes the following form. In each step, the learner explains
its interactive query to the user, and she responds by cor-
recting the prediction and explanations, if necessary, to pro-
vide feedback. We also present a model-agnostic method,
called CAIPI, instantiating our framework for active learn-
ing. CAIPI extends active learning in several ways. Akin
to coactive learning (Shivaswamy and others 2015), query
instances are accompanied by the the model’s correspond-
ing predictions. This allows the user to check whether the
model is right or wrong on the chosen instance. However,
nothing prevents the model from being right (or wrong)
for the wrong reasons, e.g., when there are ambiguities in
the data such as confounders (Ross and others 2017). To
avoid this issue, CAIPI accompanies predictions with corre-
sponding explanations, computed by any local explainer of
choice (Ribeiro and others 2016; Lundberg and others 2016;
Ross and others 2017; Ribeiro and others 2018); in this
paper we use LIME1 (Ribeiro and others 2016), a sim-
ple model-agnostic explainer that allows to easily com-
pute explanations and present them to the user as inter-
pretable (visual) artifacts. By witnessing the evolution of
the explanations—like a teacher supervising the progress
of a student—the user can see whether the model eventu-
ally “gets it”. Finally, the user can even correct the expla-
nation presented to guide the learner. This correction step is
crucial for more directly affecting the learner’s beliefs and
is integral to modulating trust (Hoffman and others 2013;
Kulesza and others 2015). Explanation corrections also fa-
cilitate learning (the right concept), especially in problem-
atic cases that labels alone can not handle (Ross and others

1CAIPIrinhas are made out of LIMEs.



2017), as shown by our experiments. Overall, CAIPI is the
first active learning approach that employs explanation cor-
rections as an additional feedback channel in a model- and
explainer-agnostic fashion. Our empirical evidence demon-
strates that this interaction through explanations can modu-
late trust and booat the effectiveness of learning, also com-
pared to state-of-the-art.

We proceed as follows. First, we touch upon additional re-
lated work. Then we introduce XIL and derive CAIPI. Before
concluding, we present our empirical evaluation.

Further Related Work
Machine learning explainers fall in two classes. Global ap-
proaches aim to explain a black-box model by converting it
as a whole to a more interpretable format (Bucilu and others
2006; Bastani and others 2017). Local approaches instead
interpret individual predictions (Lundberg and others 2016).
Surprisingly, they do not consider interaction between the
user and the model. Existing interactive learning approaches
such as active, coactive, and active imitation learning do
not consider the issue of explanations and trust, as already
discussed. Given the centrality of the user in recommenda-
tion, interactive preference elicitation makea use of conver-
sational interaction to improve trust and directability (Peint-
ner and others 2008; Chen and others 2012), but often rely
on rudimental learning strategies (if any).

Indeed, learning from explanations has been explored in
concept learning (Mitchell and others 1986; DeJong and
others 2011) and probabilistc logic programming (Kimmig
and others 2007), where explanations are themselves logical
objects. Unfortunately, these results are tied to logic-based
models and make use of rather opaque forms of explanations
(e.g. logic proofs), which can be difficult to grasp for non-
experts. Explanatory interactive learning instead leverages
explanations for mainstream machine learning approaches.

More recently, researchers explored feature supervi-
sion (Raghavan and others 2006; 2007; Druck and others
2008; 2009; Settles 2011; Attenberg and others 2010) and
rationales (Zaidan and others 2007; 2008; Sharma and oth-
ers 2015), which leverage both label- and feature-level (or
sentence-level, for rationales) supervision with the aim of
improving learning efficiency. These works show that pro-
viding rationales, even from scratch, can be easy for human
annotators (Zaidan and others 2007), sometimes even more
so than providing the labels themselves (Raghavan and oth-
ers 2006). These approaches assume that the learner and the
user can both work with the same features, which is not the
case in general. More generally, most of these approaches
are black-box, i.e., they do produce no explanations at all.
The connection to directability and trust is not explicitly
made. Those approaches that do are either model- or appli-
cation specific (e.g. (Zaidan and others 2007)). Explanatory
interactive learning generalizes these ideas to arbitrary clas-
sification tasks and models. We remark that the feedback
techniques proposed in these works are orthogonal to ex-
planatory interactions and can be easily combined with it.
We showcase this in one of our experiments, which lever-
ages the corrective technique of (Zaidan and others 2007).

Finally, the UI community also investigated meaningful
interaction strategies so that the user can build a mental
model of the system. In (Stumpf and others 2009) the user
is allowed to provide explanations, while (Kulesza and oth-
ers 2015) provides an explanation-centric approach to inter-
active teaching. These works however focus on simple ma-
chine learning models, like Naı̈ve Bayes, while explanatory
interactive learning is much more general.

Explanatory Interactive Learning (XIL)
In XIL, a learner is able to interactively query the user (or
some other information source) to obtain the desired outputs
at data points. The interaction takes the following form. At
each step, the learner considers a data point (labeled or un-
labeled), predicts a label, and provides explanations of its
prediction. The user responds by correcting the learner if
necessary, providing a slightly improved—but not necessar-
ily optimal—feedback to the learner.

Let us now instantiate this schema to explanatory active
learning—combining active learning with local explainers.
Indeed, other interactive learning can be made explanatory
too, including coactive learning (Shivaswamy and others
2015), active imitation learning (Judah and others 2012),
and mixed-initiative interactive learning (Cakmak and oth-
ers 2011), but this is beyond the scope of this paper.

Active learning. The active learning paradigm targets
scenarios where obtaining supervision has a non-negligible
cost. Here we cover the basics of pool-based active learning,
and refer the reader to two excellent surveys (Settles 2012;
Hanneke and others 2014) for more details. Let X be the
space of instances and Y be the set of labels (e.g. Y =
{±1}). Initially, the learner has access to a small set of la-
belled examples L ⊆ X × Y and a large pool of unlabelled
instances U ⊆ X . The learner is allowed to query the la-
bel of unlabelled instances (by paying a certain cost) to a
user functioning as annotator, often a human expert. Once
acquired, the labelled examples are added to L and used
to update the model. The overall goal is to maximize the
model quality while keeping the number of queries or the
total cost at a minimum. To this end, the query instances are
chosen to be as informative as possible, typically by maxi-
mizing some informativeness criterion, such as the expected
model improvement (Roy and others 2001) or practical ap-
proximations thereof. By carefully selecting the instances to
be labelled, active learning can enjoy much better sample
complexity than passive learning (Castro and others 2006;
Balcan and others 2010). Prototypical active learners in-
clude max-margin (Tong and Koller 2001) and Bayesian ap-
proaches (Krause and others 2007); recently, deep variants
have been proposed (Gal and others 2017).

However, active—showing query data points—and even
coactive learning—showing additionally the prediction of
the query data point— do not establish trust: informative se-
lection strategies just pick instances where the model is un-
certain and likely wrong. Thus, there is a trade-off between
query informativeness and user “satisfaction,” as noticed and
explored in (Schnabel and others 2018). In order to prop-
erly modulate trust into the model, we argue it is essential to
present explanations.



Local explainers. There are two main strategies for in-
terpreting machine learning models. Global approaches aim
to explain the model by converting it as a whole to a more
interpretable format (Bucilu and others 2006; Bastani and
others 2017). Local explainers instead focus on the arguably
more approachable task of explaining individual predic-
tions (Lundberg and others 2016). While explainable inter-
active learning can accommodate any local explainer, in our
implementation we use LIME (Ribeiro and others 2016), de-
scribed next2. The idea of LIME (Local Interpretable Model-
agnostic Explanations) is simple: even though a classifier
may rely on many uninterpretable features, its decision sur-
face around any given instance can be locally approximated
by a simple, interpretable local model. In LIME, the local
model is defined in terms of simple features encoding the
presence or absence of basic components, such as words in
a document or objects in a picture3. An explanation can be
readily extracted from such a model by reading off the con-
tributions of the various components to the target prediction
and translating them to an interpretable visual artifact. For
instance, in document classification one may highlight the
words that support (or contradict) the predicted class.

Formally, let f : X → Y be an uninterpretable classifier
(e.g., a dense linear model, a random forest, a deep network),
ŷ = f(x) the target prediction, and for each basic com-
ponent i let ψi(x) be the corresponding indicator function.
In order to explain the prediction, LIME produces an inter-
pretable model g : X → Y , based solely on the interpretable
features {ψi}i, that approximates f in the neighborhood of
x. Here g can be any sufficiently interpretable model, for in-
stance a sparse linear classifier or a shallow decision tree.
Computing g amounts to solving argming `x(f, g) + Ω(g),
where `x is a “local loss” that measures the fidelity of g to f
in the neighborhood of x, and Ω(g) is a regularization term
that controls the complexity and interpretability of g.

For the sake of simplicity, we focus on LIME in con-
junction with sparse linear models of the form g(x) =
〈w,ψ(x)〉 + b, where 〈·, ·〉 denotes the dot product. In or-
der to enhance interpretability, at most k non-zero coeffi-
cients are allowed, where k is sufficiently small (see our Em-
pirical Analysis for the values we use). Specifically, LIME
measures the fidelity of the linear approximation with a “lo-
cal” L2 distance, namely `x(f, g) =

∫
x′ k(x, x′)(f(x′) −

g(x′))2dx′. In practice, this problem is solved by approxi-
mating the integral as a sum over a large enough set S ⊆
X of instances sampled uniformly at random4 and solv-
ing the sparsity-constrained least-squares problem: g =
argming

∑
x′∈S k(x, x′)(f(x′)− g(x′))2 s.t. ‖w‖0 ≤ k.

Note that g does depend on both the target instance x and
on the prediction ŷ = f(x). The relevance and polarity of

2We use LIME for simplicity. RRR (Ross and others 2017) and
ANCHORS (Ribeiro and others 2018) are valid alternatives.

3While not all problems admit explanations in terms of elemen-
tary components, many of them do (Ribeiro and others 2016); in
this case, LIME assumes these to be provided in advance.

4In LIME the samples are taken from the image of ψ, i.e.,
{ψ(x) : x ∈ X}, and then mapped back to X to compute their
predicted class. We omit this detail for clarity.

Algorithm 1 CAIPI takes as input a set of labelled examples
L, a set of unlabelled instances U , and iteration budget T .

1: f ← FIT(L)
2: repeat
3: x← SELECTQUERY(f,U)
4: ŷ ← f(x)
5: ẑ ← EXPLAIN(f, x, ŷ)
6: Present x, ŷ, and ẑ to the user
7: Obtain y and explanation correction C
8: {(x̄i, ȳi)}ci=1 ← TOCOUNTEREXAMPLES(C)
9: L ← L ∪ {(x, y)} ∪ {(x̄i, ȳi)}ci=1

10: U ← U \ ({x} ∪ {x̄i}ci=1)
11: f ← FIT(L)
12: until budget T is exhausted or f is good enough
13: return f

all components can be readily read off from the weights w:
|wj | > 0 suggests that the jth component does contribute
to the overall prediction, while wj > 0 and wj < 0 imply
that, when present, the jth component drives the prediction
toward ŷ or away from it, respectively. Finally, this informa-
tion is used to construct a (visual) explanation.

Explanatory Active Learning. Now, we have everything
together for explanatory active learning and CAIPI. Specif-
ically, we require black-box access to an active learner and
an explainer. We assume that the active learner provides a
procedure SELECTQUERY(f,U) for selecting an informa-
tive instance x ∈ U based on the current model f , and a
procedure FIT(L) for fitting a new model (or update the cur-
rent model) on the examples in L. The explainer is assumed
to provide a procedure EXPLAIN(f, x, ŷ) for explaining a
particular prediction ŷ = f(x). The framework is intended
to work for any reasonable learner and explainer.

When using LIME for computing an interpretable model
locally around the queries in order to visualize explanations
for current predictions, this results in CAIPI as summarized
in Alg. 1. At each iteration t = 1, . . . , T an instance x ∈ U
is chosen using the query selection strategy implemented by
the SELECTQUERY procedure. Then its label ŷ is predicted
using the current model f , and EXPLAIN is used to produce
an explanation ẑ of the prediction. The triple (x, ŷ, ẑ) is pre-
sented to the user as a (visual) artifact. The user checks the
prediction and the explanation for correctness, and provides
the required feedback. Upon receiving the feedback, the sys-
tem updates U and L accordingly and re-fits the model. The
loop terminates when the iteration budget T is reached or
the model is good enough.

During interactions between the system and the user, three
cases can occur: (1) Right for the right reasons: The pre-
diction and the explanation are both correct. No feedback
is requested. (2) Wrong for the wrong reasons: The pre-
diction is wrong. As in active learning, we ask the user to
provide the correct label. The explanation is also necessarily
wrong, but we currently do not require the user to act on it.
(3) Right for the wrong reasons: The prediction is correct
but the explanation is wrong. We ask the user to provide an
explanation correction C.



Figure 1: (Left) Mathematical intuition for the counterexam-
ple strategy. (Right) Example training round as presented in
the questionnaire. The classification is correct but the expla-
nation shows that the two most relevant pixels do not match
the true classification rule (as in S3). (Best viewed in color).

The “right for the wrong reasons” case is novel in ac-
tive learning, and we propose explanation corrections to
deal with it. They can assume different meanings de-
pending on whether the focus is on component rele-
vance, polarity, or relative importance (ranking), among
others. In our experiments we ask the annotator to indi-
cate the components that have been wrongly identified by
the explanation as relevant, that is, C = {j : |wj | >
0 ∧ the user believes the jth component to be irrelevant}. In
document classification, C would be the set of words that are
irrelevant according to the user but relevant for the model.

Given the correction C, we are faced with the problem
of explaining it back to the learner. We propose a sim-
ple strategy to achieve this. This strategy is embodied by
TOCOUNTEREXAMPLES. It converts C to a set of coun-
terexamples that teach the learner not to depend on the irrel-
evant components. In particular, for every j ∈ C we generate
c examples (x̄1, ȳ1), . . . , (x̄c, ȳc), where c is an application-
specific constant. Here, the labels ȳi are identical to the pre-
diction ŷ. The instances x̄i, i = 1, . . . , c are also identical to
the query x, except that the jth component (i.e. ψj(x)) has
been either randomized, changed to an alternative value, or
substituted with the value of the jth component appearing in
other training examples of the same class. In sudoku, each
x̄i would be a copy of the query sudoku x where the cells in
C have been (for instance) filled with random numbers con-
sistent with the predicted label. This process produces c|C|
counterexamples, which are added to L.

Why is this data augmentation a sensible idea? To see
this, consider the case of linear max-margin classifiers. Let
f(x) = 〈w,φ(x)〉 + b be a linear classifier over two fea-
tures, φ1 and φ2, of which only the first is relevant. Fig. 1
(left) shows that f(x) (red line) uses φ2 to correctly clas-
sify a negative example xi. In order to obtain a better model
(e.g. the green line), the simplest solution would be to en-
force an orthogonality constraint 〈w, (0, 1)>〉 = 0 during
learning. Counterexamples follow the same principle. In the
separable case, the counterexamples {x̄i`}c`=1 amount to ad-
ditional max-margin constraints (Cortes and others 1995)
of the form yi〈w,φ(x̄i`)〉 ≥ 1. The only ones that influ-
ence the model are those on the margin, for which strict
equality holds. For all pairs of such counterexamples `, `′
it holds that 〈w,φ(x̄i`)〉 = 〈w,φ(x̄i`′)〉, or equivalently
〈w, δi` − δi`′〉 = 0, where δi` = φ(x̄i`) − φ(xi). In
other words, the counterexamples encurage orthogonality

Q1 Q2 Q3
S1 64.7% 35.3% 82.4%
S2 76.5% 64.7% 70.6%
S3 29.4% 11.8% 41.2%

no Counterexamples Input
corr. c = 1 c = 3 c = 5 Gradients

Train 0.978 0.938 0.922 0.924 0.898
Test 0.482 0.821 0.851 0.858 0.853

Table 1: Explanatory feedback can boost trust and perfor-
mance. (Top) User study: percentage of “yes” answers. (Bot-
tom) Accuracy on the fashion MNIST dataset of an MLP
without corrections (no corr.), with our counterexample cor-
rections using varying c (middle), and with input gradient
constraints (Ross and others 2017).

between w and the correction vectors δi` − δi`′ , thus ap-
proximating the orthogonality constraint above.

Most importantly, this data augmentation procedure is
model-agnostic, although alternatives indeed exist: Con-
trastive examples (Zaidan and others 2007), feature rank-
ing (Small and others 2011) for SVMs and constraints on the
input gradients for differentiable models (Ross and others
2017). These may be more effective in practice, and CAIPI
can accomodate all of them. However, since our strategy
is both model- and explainer-agnostic, in the remainder we
will stick to it for maximum generality.

Empirical Evidence
Our intention here is to address empirically the following
questions: (RQ1) Can explanations (and their consistency
over time) appropriately modulate the user’s trust into the
model? (RQ2) Can explanation corrections lead to better
models? (RQ3) Do the explanations necessarily improve as
the learner obtains more labels? (RQ4) Does the magnitude
of this effect depend on the specific learner?

(RQ1) User study. We designed a questionnaire about
a machine that learns a simple concept by querying labels
(but not explanation corrections) to an annotator. The ques-
tionnaire, available in the Supplementary Material, was ad-
ministered to 17 randomly selected undergraduate students
from an introductory course on deep learning. We designed a
toy binary classification problem (inspired by (Ross and oth-
ers 2017)) about classifying small (3 × 3) black-and-white
images. The subjects were told that an image is positive if
the two top corners are white and negative otherwise. Then
they were shown three learning sessions consisting of five
query/feedback rounds each. In session 1 (S1) every round
included the images chosen by the model, the correspond-
ing prediction, and the label provided by a knowledgeable
annotator. No explanations were shown. The predictions are
wrong for the first three rounds and correct in the last two.
Sessions 2 and 3 (S2, S3) were identical to S1, meaning that
at every round the same example, prediction and feedback
label were shown, but now explanations were also provided.
The explanations highlighted the two most relevant pixels,
as in Fig. 1 (right). In S2 the explanations converged to the
correct rule—they highlight the two top corners—from the



fourth round onwards, while in S3 they did not. Removing
the explanations reduces both S2 and S3 to S1. After each
session, the subjects were asked three questions: (Q1) “Do
you believe that the AI system eventually learned to clas-
sify images correctly?” (Q2) “Do you believe that the sys-
tem eventually learned the correct classification rule?” (Q3)
“Would you like to further assess the system by checking
whether it classifies 10 random images correctly?” The first
two questions test the subject’s uncertainty in the predictive
ability and beliefs of the classifier, resp., while the last one
tests the relationship between predictive accuracy (but not
explanation correctness) and expected uncertainty reduc-
tion. The percentage of “yes” answers is down in Tab. 1(top).

As expected, the uncertainty in the model’s correctness
depends heavily on what information channels are enabled.
When no explanations are shown (S1), only 35% of the sub-
jects assert to believe that the model learned the correct rule
(Q2). This percentage almost doubles (65%) when explana-
tions are shown and converge to the correct rule (S2). The
need to see more examples also lowers from 82% to 71%,
but does not drop to zero. This reflects the fact that five
rounds are not enough to reduce the subject’s uncertainty
to low enough levels. The percentage of subjects asserting
that the classifier produces correct predictions (regardless of
the learned rule, Q1) also increases from 65% to 77% when
correct explanations are shown (S2). When the explanations
do not converge (S3), the trend is reversed: Q1 drops to 29%
and Q2 to 12%, i.e., most subjects do not believe that the
model’s behavior and beliefs are in any way correct. This
is the only setting where Q3 drops below 50% (41%): wit-
nessing that the model’s beliefs do not match the target rule
induces distrust (with high certainty). This confirms the pre-
vious finding that trust into machines drops when wrong be-
havior is witnessed (Hoffman and others 2013). Thus, RQ1
can be answered affirmatively: augmenting interaction with
explanations does appropriately drive trust into the model.

Next to the user study, we considered simulated users—
as it is common for active learning— to investigate (RQ2–
4). To this aim, we implemented CAIPI on top of several
standard active learners and applied it to different learning
tasks. Note that our goal here is to evaluate the contribu-
tion of explanation feedback, not the learners themselves. In-
deed, CAIPI can trivially accommodate more advanced mod-
els than the ones employed here. In all cases, the model’s
explanations are computed with LIME 5. As is common in
active learning, we simulate a human annotator that provides
correct labels. Explanation corrections are also assumed to
be correct and complete (i.e. they identify all false positive
components), for simplicity6. The specifics of the correc-
tion strategy are described in the next paragraphs. Our ex-
perimental setup is available at https://github.com/
stefanoteso/caipi

5Due to sampling, LIME may output different explanations for
the same prediction. To reduce variance, we ran it 10 times and
kept the k components identified most often.

6In practice corrections may be incomplete or noisy, especially
when dealing with non-experts. This can be handled by, e.g., down-
weighting the counterexamples.

(RQ2) Evaluation on a passive setting. We applied our
data augmentation strategy to a decoy variant of fashion
MNIST, a fashion product recognition dataset7. The dataset
includes 70,000 images over 10 classes. All images were
corrupted by introducing confounders, that is, 4× 4 patches
of pixels in randomly chosen corners whose shade is a func-
tion of the label in the training set and random in the test set
(see (Ross and others 2017) for details). The average test set
accuracy of a multilayer perceptron (with the same hyperpa-
rameters as in (Ross and others 2017)) is reported in Tab. 1
(bottom) for three correction strategies: no corrections, our
counterexample strategy (CE), and the input-gradient con-
straints proposed by (Ross and others 2017) (IG). For CE,
for every training image we added c = 1, 3, 5 counterexam-
ples where the decoy pixels are randomized. When no cor-
rections are given, the accuracy on the test set is 48%: the
confounders completely fool the network. Providing even a
single counterexample increases the accuracy to 82%, i.e.,
the effect of confounders drops drastically. With more coun-
terexamples the accuracy passes the one of IG (85%). This
shows that (RQ2) counterexamples—and therefore explana-
tion corrections—are an effective measure for improving the
model in terms of both predictive performance and beliefs.

(RQ3,4) Actively choosing among concepts and com-
parison to SOTA. We applied CAIPI to the “colors” dataset
of (Ross and others 2017). The goal is to classify 5 × 5 im-
ages with four possible colors. An image is positive if either
the four corner pixels have the same color (rule 0) or the
three top middle pixels have different colors (rule 1). Cru-
cially, the dataset only includes images where either both
rules hold or neither does, that is, labels alone can not disam-
biguate between the two rules. Explanations highlight the k
most relevant pixels, and corrections indicate the pixels that
are wrongly identified as relevant. In the counterexamples,
the wrongly identified pixels are recolored using all possi-
ble alternative colors consistent with ŷ 8. The features are
of the form “pixel i has the same color as pixel j” for all
i, j = 1, . . . , 25, i < j. In this space, the rules can be repre-
sented by sparse hyperplanes. We select each rule in turn and
provide corrections according to it, and then check whether
the feedback drives the classifier toward it. k was set to 4 for
rule 0 and to 3 for rule 1. We followed a 10-fold CV strategy.

In a first step, we considered a standard L2 SVM active
learner with the closest-to-margin query selection heuris-
tic (Settles 2012). This classifier can in principle represent
both rules, but it is not suited for learning sparse concepts.
Indeed, the SVM struggles to learn both rules, and the coun-
terexamples have little effect on it (see the Supplementary
Material for the complete results). This is plausible since the
L2 norm cannot capture the underlying sparse concept: even
though corrections try to drive the model toward it, the L2

SVM can still learn both rules (as shown by the coefficient
curves) without a problem. In other words, the model is not
constrained enough.

An L1 SVM, an active learner tailored for sparse con-

7https://github.com/zalandoresearch/
fashion-mnist

8We always discard counterexamples that appear in the test set.



Figure 2: Explanatory feedback (‘+ Corr.’) can drive an active L1 SVM towards the right concept (colors problem). (Left)
instantaneous F1 score of the LIME explanations for rule 0 (leftmost) and rule 1 (left middle). (Right) Decomposition of the
learned weight vector when the corrections push toward rule 0 (right middle) and rule 1 (rightmost). (Best viewed in color)

Figure 3: Explanatory feedback (‘+ Corr.’) can boost an ac-
tive logistic regression (LR) on 20 newsgroups.

cepts (Zhu and others 2004), fares much better. Our results
show that the rules greatly benefit this model. To evalu-
ate their effect, we compute the average instantaneous F1

score of the pixels identified by LIME w.r.t. the pixels truly
relevant for the selected rule. This measures the quality of
the explanations presented to the user. In addition, we mea-
sure the objective quality of the model by decomposing the
learned weights using least-squares asw = α0w

∗
0+α1w

∗
1+

residual, where w∗i is the “perfect” weight vector of rule
i = 0, 1. The instantaneous F1 and change in coefficients
can be viewed in Fig. 2. Now that the model can capture
the target concepts, the contribution of counterexamples is
very noticeable: the L1 SVM is biased toward rule 1, as it is
sparser (data not shown), but it veers clearly toward rule 0
when corrections are provided and learns rule 1 faster when
corrections push toward it. These results show clearly that
explanation feedback can drive the classifier toward the right
concept, so long as the chosen model can capture it clearly.

(RQ3,4) Active learning for text classification. Finally,
we applied CAIPI to distinguishing between “Atheism” and
“Christian” posts in the 20 newsgroups dataset using logistic
regression with uncertainty sampling. Headers and footers
were removed; only adjectives, adverbs, nouns, and verbs
were kept and stemmed. As gold standard for the explana-
tions, we selected ≈ 1

5 of the words as relevant using feature
selection. Here the LIME-provided explanations identified
the k most relevant words, while corrections identified the
falsely relevant words. For each document, k was set to the
number of truly relevant words. To showcase CAIPI’s flexi-
bility, the counterexamples were generated with the strategy
proposed in (Zaidan and others 2007), adapted to produce
feedback based on the falsely relevant words only. The 10-

fold cross-validated results can be found in Fig. 3. The plots
show that the model with explanation corrections is steadily
better in terms of explanation quality—over the test set (left)
and queries (right)—than the baseline without corrections.
The predictive performance can be found in the longer ver-
sion of the paper 9. Overall, explanatory interaction can im-
prove the model’s quality.

Conclusion
We introduced explanatory interactive learning and pro-
posed CAIPI, the first explanatory interactive learning
method. CAIPI faithfully explains its queries in an inter-
pretable manner and accounts for the user’s corrections of
the model if it is right (wrong) for the wrong the reasons.
This opens the black-box of active learning and turns it into
a cooperative learning process between the machine and the
user. Our experimental results demonstrate that this coop-
eration can improve performance and indeed encourage (or
discourages, if appropriate) trust into the model.

There are a number of interesting avenues for future
work. Other interactive learning approaches such as coac-
tive (Shivaswamy and others 2015), active imitation (Judah
and others 2012), mixed-initiative interactive (Cakmak and
others 2011) and guided probabilistic learning (Odom and
Natarajan 2018) should be made explanatory. Making deep
active learning (Gal and others 2017) explanatory is likely
to improve upon the sample complexity of deep learning.
Selecting queries that maximize the information of explana-
tions, e.g., by using SP-LIME (Ribeiro and others 2016), as
well as feeding back informative counterexample only are
likely to improve performance.
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