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Abstract

Machine learning predictors are successfully deployed in ap-
plications ranging from disease diagnosis, to predicting credit
scores, to image recognition. Even when the overall accuracy
is high, the predictions often have systematic biases that harm
specific subgroups, especially for subgroups that are minori-
ties in the training data. We develop a rigorous framework of
multiaccuracy auditing and post-processing to improve pre-
dictor accuracy across identifiable subgroups. Our algorithm,
MULTIACCURACY BOOST, works in any setting where we
have black-box access to a predictor and a relatively small set
of labeled data for auditing. We prove guarantees on the con-
vergence rate of the algorithm and show that it improves over-
all accuracy at each step. Importantly, if the initial model is
accurate on an identifiable subgroup, then the post-processed
model will be also. We demonstrate the effectiveness of this
approach on diverse applications in image classification, fi-
nance, and population health. MULTIACCURACY BOOST can
improve subpopulation accuracy (e.g. for “black women”)
even when the sensitive features (e.g. race, gender) are not
known to the algorithm.

1 Introduction
Despite the successes of machine learning at complex tasks
that involve making predictions about people, there is grow-
ing evidence that “state-of-the-art” models can perform
significantly less accurately on minority populations than
on the majority population. Indeed, a notable study of
three commercial face recognition systems known as the
“Gender Shades” project (Buolamwini and Gebru 2018),
demonstrated significant performance gaps across differ-
ent populations at classification tasks. While all systems
achieved roughly 90% accuracy at gender detection on a
popular benchmark, a closer investigation revealed that the
system was significantly less accurate on female subjects
compared to males and on dark-skinned individuals com-
pared to light-skinned. Worse yet, this discrepancy in ac-
curacy compounded when comparing dark-skinned females
to light-skinned males; classification accuracy differed be-
tween these groups by as much as 34%!
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A first approach to address this serious problem would be
to update the training distribution to reflect the distribution
of people, making sure historically-underrepresented popu-
lations are well-represented in the training data. While this
approach may be viewed as an eventual goal, often for his-
torical and social reasons, data from certain minority popu-
lations is less available than from the majority population.
In particular, we may not immediately have enough data
from these underrepresented subpopulations to train a com-
plex model. Additionally, even when adequate representa-
tive data is available, this process necessitates retraining the
underlying prediction model. In the common setting where
the learned model is provided as a service, like a commer-
cial image recognition system, there may not be sufficient
incentive (financial, social, etc.) for the service provider to
retrain the model. Still, the clients of the model may want
to improve the accuracy of the resulting predictions across
the population, even when they are not privy to the inner
workings of the prediction system.

At a high level, our work focuses on a setting, adapted
from (Hébert-Johnson et al. 2018), that is common in prac-
tice but distinct from much of the other literature on fairness
in classification. We are given black-box access to a clas-
sifier, f0, and a relatively small “validation set” of labeled
samples drawn from some representative distributionD; our
goal is to audit f0 to determine whether the predictor sat-
isfies a strong notion of subgroup fairness, multiaccuracy.
Multiaccuracy requires (in a sense that we make formal in
Section 2) that predictions be unbiased, not just overall, but
on every identifiable subpopulation. If auditing reveals that
the predictor does not satisfy multiaccuracy, we aim to post-
process f0 to produce a new classifier f that is multiaccu-
rate, without adversely affecting the subpopulations where
f0 was already accurate. Multiaccuracy auditing makes no
assumptions about the original classifier; in particular, it can
handle inadvertent and malicious forms of discrimination.

Our contributions We develop a framework for auditing
and post-processing prediction models for multiaccuracy.
We describe a new algorithm, MULTIACCURACY BOOST,
where a simple learning algorithm – the auditor – is used to
identify subpopulations where f0 is systematically biased.
This information is then used to iteratively post-process
f0 until the multiaccuracy condition – unbiased predic-



tions in each identifiable subgroup – is satisfied. Our no-
tion of multiaccuracy differs from parity-based notions of
fairness (Dwork et al. 2012; Hardt, Price, and Srebro 2016;
Kearns et al. 2017), and is reasonable in settings such as gen-
der detection where we would like to boost the classifier’s
accuracy across subgroups. We prove convergence guaran-
tees for MULTIACCURACY BOOST and show that post-
processing for multiaccuracy may actually improve the over-
all classification accuracy. We describe the post-processing
algorithm in Section 3.

Empirically, we validate MULTIACCURACY BOOST in
an experimental case study based on the Gender Shades
example (Buolamwini and Gebru 2018).1 We train an
initial prediction model that achieve good overall clas-
sification error, but exhibits biases against minority sub-
populations. After post-processing, the accuracy improves
across these minority groups, even though minority-status
is not explicitly given to the post-processing algorithm as
a feature. As long as there are features in the audit set
correlated with the (unobserved) human categories, then
MULTIACCURACY BOOST is effective at improving the
classification accuracy across these categories.

As suggested by the theory, enforcing multiaccuracy ac-
tually improves the overall accuracy, by identifying sub-
populations where the initial models systematically erred;
further, post-processing does not significantly affect perfor-
mance on groups where accuracy was already high. We show
that MULTIACCURACY BOOST, which only accesses f0 as a
black-box, performs comparably and sometimes even better
than very strong white-box alternatives which has full ac-
cess to f0. We also show that the auditing process may be
useful in understanding why prediction models are making
mistakes. Specifically, the multiaccuracy auditor can be used
to produce examples of inputs where the predictor is erring
significantly. These results are reported in Section 4 and the
appendix.

2 Setting and Multiaccuracy
High-level setting. Let X denote the input space; we de-
note by y : X → {0, 1} the function that maps inputs to their
label. Let D represent the validation data distribution sup-
ported on X ; the distribution D can be viewed as the “true”
distribution, on which we will evaluate the accuracy of the
final model. In particular, we assume that the important sub-
populations are sufficiently represented on D (cf. Remark
on data distribution). Our post-processing learner receives as
input a small sample of labeled validation data {(x, y(x))},
where x ∼ D, as well as black-box access to an initial pre-
diction model f0 : X → [0, 1]. The goal is to output a new
model (using calls to f0) that satisfies the multiaccuracy fair-
ness conditions (described below).

Importantly, we make no further assumptions about f0.
Typically, we will think of f0 as the output of a learning
algorithm, trained on some other distribution D0 (also sup-
ported on X ); in this scenario, our goal is to mitigate any
inadvertently-learned biases. That said, another important

1We also evaluate performance on a semi-synthetic medical di-
agnosis task and adult income prediction, reported in the Appendix.

setting assumes that f0 is chosen adversarially to discrim-
inate against a protected population of individuals, while
aiming to appear accurate and fair on the whole; here, we
aim to protect subpopulations against malicious misclassi-
fication. The formal guarantees of multiaccuracy provide
meaningful protections from both of these important forms
of discrimination.

Additional Notation. For a subset S ⊆ X , we use x ∼ S
to denote a sample fromD conditioned on membership in S.
We take the characteristic function of S to be χS(x) = 1 if
x ∈ S and 0 otherwise. For a hypothesis f : X → [0, 1], we
denote the classification error of f with respect to a subset
S ⊆ X as erS(f ; y) = Prx∼S [f̄(x) 6= y(x)], where f̄(x)
rounds f(x) to {0, 1}. For a function z : X → [−1, 1] and a
subset S ⊆ X , let zS be the restriction to S where zS(x) =
z(x) if x ∈ S and zS(x) = 0 otherwise.

Multiaccuracy
The goal of multiaccuracy is to achieve low classification
error, not just onX overall, but also on subpopulations ofX .
This goal is formalized in the following definition adapted
from (Hébert-Johnson et al. 2018).

Definition (Multiaccuracy). Let α ≥ 0 and let C ⊆ [−1, 1]X

be a class of functions on X . A hypothesis f : X → [0, 1] is
(C, α)-multiaccurate if for all c ∈ C:∣∣∣ E

x∼D
[c(x) · (f(x)− y(x))]

∣∣∣ ≤ α. (1)

(C, α)-multiaccuracy guarantees that a hypothesis appears
unbiased according to a class of statistical tests defined by C.
As an example, we could define the class in terms of a col-
lection of subsets S ⊆ X , taking C to be χS (and its nega-
tion) for each subset in the collection; in this case, (C, α)-
multiaccuracy guarantees that for each S, the predictions of
f are at most α-biased.

Ideally, we would hope to take C to be the class of all sta-
tistical tests. Requiring multiaccuracy with respect to such
a C, however, requires learning the function y(x) exactly,
which is information-theoretically impossible from a small
sample. In practice, if we take C to be a learnable class of
functions, then (C, α)-multiaccuracy guarantees accuracy on
all efficiently-identifiable subpopulations.

For instance, if we took C to be the class of depth-4 deci-
sion trees, then multiaccuracy guarantees unbiasedness, not
just on the marginal populations defined by race and sepa-
rately gender, but by the subpopulations defined by the com-
binations of race, gender, and two other (possibly “unpro-
tected”) features. In particular, the subpopulations that mul-
tiaccuracy protects can be overlapping and include groups
beyond traditionally-protected populations.

Auditing for multiaccuracy
With the definition of (C, α)-multiaccuracy in place, a nat-
ural question to ask is how to test if a hypothesis f sat-
isfies the definition; further, if f does not satisfy (C, α)-
multiaccuracy, can we update f efficiently to satisfy the def-
inition, while maintaining the overall accuracy? We will use



a learning algorithm A to audit a classifier f for multiaccu-
racy. The algorithm A receives a small sample from D and
aims to learn a function h that correlates with the residual
function f − y. In Section 3, we describe how to use such
an auditor to solve the post-processing problem. This con-
nection between subpopulation fairness and learning is also
made in (Kearns et al. 2017; Hébert-Johnson et al. 2018;
Kim, Reingold, and Rothblum 2018), albeit for different
tasks.

To achieve (C, α)-multiaccuracy we could audit with a
naive learning algorithm that iterates over statistical tests
c ∈ C. Given an algorithm A that efficiently learns the class
C, we can speed up the auditing process; for instance, if we
take C to be the class of linear tests, we can use efficient al-
gorithms for linear regression to audit. Concretely, in our ex-
periments, we audit with ridge regression and decision tree
regression; both auditors are effective at identifying subpop-
ulations on which the model is underperforming.

Classification accuracy from multiaccuracy
Multiaccuracy guarantees that the predictions of a classifier
appear unbiased on a rich class of subpopulations; ideally
though, we would state a guarantee in terms of the classifi-
cation accuracy, not just the bias. Intuitively, as we take C
to define a richer class of tests, the guarantees of multiac-
curacy become stronger. This intuition is formalized in the
following proposition.

Proposition 1. Let ŷ : X → {−1, 1} as ŷ(x) = 1− 2y(x).
Suppose that for S ⊆ X with Prx∼D[x ∈ S] ≥ γ, there is
some c ∈ C such that Ex∼D[|c(x)− ŷS(x)|] ≤ τ . Then if f
is (C, α)-multiaccurate, erS(f ; y) ≤ 2 · (α+ τ)/γ.

That is, if there is a function in C that correlates well
with the label function on a significant subpopulation S, then
multi-accuracy translates into a guarantee on the classifica-
tion accuracy on this subpopulation.

Remark on data distribution. Note that in our definition
of multiaccuracy, we take an expectation over the distribu-
tion D of validation data. Ideally, D should reflect the true
population distribution or could be aspirational, increasing
the representation of populations who have experienced his-
torical discrimination; for instance, the classification error
guarantee of Proposition 1 improves as γ, the density of the
protected subpopulation S, grows. For instance, in our case
study on gender detection, we train on a large unbalanced
data set, but then audit using a data set of balanced diver-
sity collected for the Gender Shades study (Buolamwini and
Gebru 2018).

3 Post-processing for multiaccuracy
Here, we describe an algorithm, MULTIACCURACY BOOST,
for post-processing a pre-trained model to achieve multi-
accuracy. The algorithm is given black-box access to an
initial hypothesis f0 : X → [0, 1] and a learning algo-
rithm A : (X × [−1, 1])m → [−1, 1]X that learns a class
C, and for any accuracy parameter α > 0, outputs a hy-
pothesis f : X → [0, 1] that is (C, α)-multiaccurate. The

post-processing algorithm is an iterative procedure similar
to boosting (Schapire and Freund 2012), that uses the multi-
plicative weights framework to improve suboptimal predic-
tions identified by the auditor. This approach is similar to the
algorithm given in (Hébert-Johnson et al. 2018) in the con-
text of fairness and (Trevisan, Tulsiani, and Vadhan 2009)
in the context of pseudorandomness. Importantly, we adapt
these algorithms so that MULTIACCURACY BOOST exhibits
what we call the “do-no-harm” guarantee; informally, if f0

has low classification error on some subpopulation S ⊆ X
identified by A, then the resulting classification error on S
cannot increase significantly. In this sense, achieving our no-
tion of fairness need not adversely affect the utility of the
classifier.

Algorithm 1: MULTIACCURACY BOOST

Given:
• initial hypothesis f0 : X → [0, 1];
• auditing algorithm A : (X × [−1, 1])m → [−1, 1]X ;
• accuracy parameter α > 0;
• validation data D = D0, . . . , DT ∼ Dm;
Let:
• X0 ← {x ∈ X : f0(x) ≤ 1/2}
• X1 ← {x ∈ X : f0(x) > 1/2}

// partition X according to f0

• S ← {X ,X0,X1}
Repeat: from t = 0, 1, . . . , T

• For S ∈ S:
ht,S ← A(Dt; (ft − y)S)

// audit ft on X,X0,X1 with fresh
data

• S∗ ← argmaxS∈S Ex∼Dt [ht,S(x) · (ft(x)− y(x))]
// take largest residual

• if Ex∼Dt [ht,S∗(x) · (ft(x)− y(x))] ≤ α:
return ft

// terminate when at most alpha

• ft+1(x) ∝ e−ηht,S∗ (x) · ft(x) ∀x ∈ S∗
// multiplicative weights update

At a high level, MULTIACCURACY BOOST starts by
partitioning the input space X based on the initial clas-
sifier f0 into X0 = {x ∈ X : f0(x) ≤ 1/2} and X1 =
{x ∈ X : f0(x) > 1/2}; note that we can partition X sim-
ply by calling f0. Partitioning the search space X based on
the predictions of f0 helps to ensure that the f we output
maintains the initial accuracy of f0; in particular, it allows
us to search over just the positive-labeled examples (nega-
tive, resp.) for a way to improve the classifier.

After partitioning the input space, the procedure itera-
tively uses the learning algorithm A to search over X (and
within the partitions X0,X1) to find any function which cor-
relates significantly with the current residual in prediction
f − y. If A successfully returns some function h : X →
[−1, 1] that identifies a significant subpopulation where the



current hypothesis is inaccurate, the algorithm updates the
predictions multiplicatively according to h. In order to up-
date the predictions simultaneously for all x ∈ X , at the
tth iteration, we build ft+1 by incorporating ht into the pre-
vious model ft. This approach of augmenting the model at
each iteration is similar to boosting.

A key algorithmic challenge is to learn a multiaccurate
predictor without overfitting to the small sample of valida-
tion data. In theory, we prove bounds on the sample com-
plexity necessary to guarantee good generalization as a func-
tion of the class C, the error parameter α, and the size of sub-
populations we wish to protect γ. To guarantee good gener-
alization, we assume that A uses a fresh sample Dt ∼ Dm
per iteration. In practice, when we have few samples, we
can put all of our samples in one batch and use noise-
addition techniques to reduce overfitting (Dwork et al. 2015;
Russo and Zou 2016). In practice, we need to balance the
choice of C and the number of iterations of our algorithm to
make sure that the auditor is discovering true signal, rather
than noise in the validation data. Indeed, if the auditor A
learns an expressive enough class of functions, then our al-
gorithm will start to overfit at some point; we show empir-
ically that multiaccuracy post-processing improves the gen-
eralization error before overfitting.

From the stopping condition, it is clear that when the al-
gorithm terminates, fT will be (C, α)-multiaccurate. Thus,
it remains to bound the number of iterations T before
MULTIACCURACY BOOST terminates. Additionally, as de-
scribed, the algorithm evaluates statistics like Ex∼D[h(x) ·
(f(x) − y(x))], which we can estimate accurately and effi-
ciently from a small sample. We provide formal guarantees
on the convergence rate and the sample complexity from D
in the Appendix.

Do no harm. The distinction between our approach and
most prior works on fairness (especially (Kearns et al.
2017)) is made clear from the “do-no-harm” property that
MULTIACCURACY BOOST exhibits, stated formally as The-
orem 2. In a nutshell, the property guarantees that on any
subpopulation S ⊆ X that A audits, the classification error
cannot increase significantly from f0 to the post-processed
classifier. As we assume A can identify a very rich class of
overlapping sets, in aggregate, this property gives a strong
guarantee on the utility of the resulting predictor. Further,
the proof of Theorem 2 reveals that this worst-case bound is
very pessimistic and can be improved with stronger assump-
tions. Thus, if we use Algorithm 1 to post-process a model
that is already achieves high accuracy on the validation dis-
tribution the resulting model’s accuracy should not deterio-
rate in significant ways; empirically, we observe that classi-
fication accuracy (on held-out test set) tends to improve over
D after multiaccuracy post-processing.

Theorem 2 (Do-no-harm). Let α, β, γ > 0 and S ⊆ X be a
subpopulation where Prx∼D[x ∈ S] ≥ γ. Suppose A audits
the characteristic function χS(x) and its negation. Let f :
X → [0, 1] be the output of Algorithm 1 when given f0 :
X → [0, 1],A, and α ≤ βγ as input. Then the classification

error of f on the subset S is bounded as

erS(f ; y) ≤ 3 · erS(f0; y) + 4β. (2)

4 Case Study: Gender Detection
We aim to replicate the conditions of the Gender Shades
study (Buolamwini and Gebru 2018), to test the effective-
ness of multiaccuracy auditing and post-processing on this
important real-world example.2 For our initial model, we
train an inception-resnet-v1 (Szegedy et al. 2017) gender
classification model using the CelebA data set with more
than 200,000 face images (Liu et al. 2015). The resulting
test accuracy on CelebA for binary gender classification is
98.4%. Even though the overall accuracy of this f0 is high,
the error rate is much worse for females compared to males
and worse for blacks compared to non-blacks; these results
are qualitatively very similar to those observed by the com-
mercial gender detection systems.

We applied MULTIACCURACY BOOST using the PPB
data set (developed by Buolamwini and Gebru) which has
balanced representation across gender and race. Specifically,
we audit using ridge regression. Instead of auditing over the
raw input pixels, we use a representation derived from a vari-
ational autoencoder (VAE) trained on CelebA dataset using
Facenet (Schroff, Kalenichenko, and Philbin 2015) library.
The PPB data set is very small; thus, this experiment can be
viewed as a stress test to evaluate the data efficiency of our
post-processing technique. The test set has 415 individuals
and the audit set has size 855. PPB annotates each face as
dark (D) or light-skinned (L).

In addition to evaluating the effectiveness of the multi-
accuracy approach, we compare our post-processing results
against a strong white-box baseline. Here, we retrain the net-
work of f0 using the audit set. Specifically, we retrain the
last two layers of the network, which gives the best results
amongst retraining methods. We emphasize that this base-
line requires white-box access to f0, whereas the auditor is
“blind” – it is not explicitly given the race or gender and
knows nothing about the inner workings of f0.

All F M D L DF LM
D 100 44.6 55.4 46.4 53.6 21.4 30.4
f0 9.9 21.6 0.4 18.8 2.2 39.8 0.0

MA 3.9 6.5 1.8 7.3 0.9 12.5 0.8
RT 2.2 3.8 0.9 4.2 0.4 6.8 0.0

Table 1: Results for the PPB gender classification D de-
notes the percentages of each population in the data distribu-
tion; f0 denotes the classification error (%) of the initial pre-
dictor; MA denotes the classification error (%) of the model
after post-processing with MULTIACCURACY BOOST; RT
denotes the classification error (%) of the model after re-
training on D.

We evaluated the test accuracy of the original f0, the mul-
tiaccurate post-processed classifier, and retrained classifier
on each subgroup. MULTIACCURACY BOOST converged in

2See the appendix for two other case studies.



5 iterations and substantially reduced error across subpop-
ulations. We report the overall classification accuracy as
well as accuracy on different subpopulations We report the
population percentage in D, accuracy of the initial model,
our black-box post-processed model, and white-box bench-
marks in Table 1 for each subpopulations – e.g. DF indicates
dark-skinned female. In particular, we highlight the subpop-
ulations of DF and LM; the classification error improves
significantly on DF but does not hurt the accuracy on LM
significantly.

Multiaccuracy auditing as diagnostic As was shown in
(Buolamwini and Gebru 2018), we’ve demonstrated that
models trained in good faith on unbalanced data may exhibit
significant biases on the minority populations. For instance,
the initial classification error on black females is significant,
whereas on white males, it is near 0%. Importantly, the only
way we were able to report these accuracy disparities was
by having access to a rich data set where gender and race
were labeled. Often, this demographic information will not
be available; indeed, the CelebA images are not labeled with
race information, and as such, we were unable to evaluate
the subpopulation classification accuracy on this set. Thus,
practitioners may be faced with a problem: even if they know
their model is making undesirable mistakes, it may not be
clear if these mistakes are concentrated on specific subpop-
ulations. Absent any identification of the subpopulations on
which the model is underperforming, collecting additional
training data may not actually improve performance across
the board.

We demonstrate that multiaccuracy auditing may serve as
an effective diagnostic and interpretation tool to help devel-
opers identify systematic biases in their models. The idea
is simple: the auditor returns a hypothesis h that essentially
“scores” individual inputs x by how wrong the prediction
f0(x) is. If we consider the magnitude of their scores |h(x)|,
then we may understand better the biases that the encoder is
discovering. We test this idea on the PPB data set, evaluat-
ing the test images’ representations with the hypotheses the
auditor returns.

In Figure 1, we display the images in the test set that get
the highest and lowest effect (|h(x)| large and |h(x)| ≈ 0,
respectively) according to the first and second hypothesis re-
turned by the auditor. In the first round of auditing, the three
highest-scoring images (top row) are all women, both black
and white. The least active images (second row) are men in
suits, suggesting that suits may be a highly predictive feature
of being a man according to the original classifier, f0. Over-
all the first round of audit seems to identify gender as the
axis of bias in f0. In the second round, after the classifier has
been improved by one step of MULTIACCURACY BOOST,
the auditor seems to hone in on the “dark-skinned women”
subpopulation as the region of bias.

5 Discussion
In this work, we propose multiaccuracy as a framework for
improving the fairness and accountability of black-box pre-
diction systems. Here, we discuss how our work compares

Figure 1: Interpreting Auditors
PPB test images of largest and smallest bias detected by the
auditor for the first (rows 1-2) and second (rows 3-4) rounds
of auditing.

to prior works, specifically, how it fits into the growing liter-
ature on fairness for learning systems.

Related works
Many different notions of fairness have been proposed in
literature on learning and classification (Dwork et al. 2012;
Hardt, Price, and Srebro 2016; Zemel et al. 2013; Dwork
et al. 2017; Hébert-Johnson et al. 2018; Kearns et al. 2017;
Hashimoto et al. 2018; Kim, Reingold, and Rothblum 2018;
Rothblum and Yona 2018). Many of these works encode
some notion of parity, e.g. subgroups should have similar
false positive rates, as an explicit objective/constraint in the
training of the original classifier. The fairness properties
are viewed as constraints on the classifier that ultimately
limit the model’s utility. A common belief is that in order
to achieve equitable treatment, the classifier’s performance
must degrade.

A notable exception to this pattern is the work of Hébert-
Johnson et al. (Hébert-Johnson et al. 2018), which first
introduced a variant of multiaccuracyand multicalibration
in the context of regression tasks. (Hébert-Johnson et al.
2018) provides theoretical algorithms for achieving multiac-
curacy and multicalibration, and shows how to post-process
a model to achieve multicalibration in a way that improves
the regression objective across all subpopulations (in terms
of squared-error). Our work directly extends the approach
of (Hébert-Johnson et al. 2018), adapting their work to the
binary classification setting. Our post-processing algorithm,
MULTIACCURACY BOOST, builds on the algorithm given in



(Hébert-Johnson et al. 2018), providing the additional “do-
no-harm” property. This property guarantees that if the ini-
tial predictor f0 has small classification error on some iden-
tifiable group, then the resulting post-processed model will
also have small classification error on this group.

Independent work of Kearns et al. (Kearns et al. 2017)
also investigated how to achieve statistical fairness guar-
antees, not just for traditionally-protected groups, but on
rich families of subpopulations. (Kearns et al. 2017) pro-
posed a framework for auditing and learning models to
achieve fairness notions like statistical parity and equal
false positive rates. Both works (Hébert-Johnson et al. 2018;
Kearns et al. 2017) connect the task of learning a model that
satisfies the notion of fairness to the task of (weak) agnostic
learning (Kearns 1998; Kearns, Schapire, and Sellie 1994;
Kalai, Mansour, and Verbin 2008; Feldman 2010). (Kearns
et al. 2017) also reduces the problem of learning a classifier
satisfying parity-based notions of fairness across subgroups
to the problem of auditing; it would be interesting if their no-
tion of auditing can be used by humans as a way to diagnose
systematic discrimination.

Our approach to post-processing, which uses a learning
algorithm as a fairness auditor differs from (Kearns et al.
2017) in important ways. In their framework, the auditor is
used during (white-box) training to constrain the model se-
lected from a pre-specified hypothesis class; ultimately, this
constrains the accuracy of the predictions. In our setting, we
do not restrict ourselves to an explicitly-defined hypothesis
class, so we can augment the current model using the audi-
tor; these augmentations improve the accuracy of the model.
Additionally, by applying mutliaccuracy over real-valued
functions (as opposed to boolean functions), we can get ef-
ficient algorithms that provably satisfy (C, α)-multiaccuracy
for nontrivial classes C (specifically, linear hypotheses).

At a technical level, our post-processing algorithm is
similar to gradient boosting (Mason et al. 2000; Friedman
2001). Still, our perspective is quite different from the typ-
ical boosting setting. Rather than using an expressive class
of predictors as the base classifiers to learn the function di-
rectly, we focus on the regime where data is limited and
we must restrict our attention to simple classes. Thus, it be-
comes important that we leverage the expressiveness (and
initial accuracy) of f0 if we are to obtain strong performance
using the multiaccuracy approach.

A different approach to subgroup fairness is studied by
Dwork et al. (Dwork et al. 2017). This work investigates
the question of how to learn a “decoupled” classifier, where
separate classifiers are learned for each subgroup and then
combined to achieve a desired notion of fairness. While ap-
plicable in some settings, at times, this approach may be
untenable. First, decoupling the classification problem re-
quires that we have the attributes of interest in the data set
and that the groups we wish to protect are partitioned by
these attributes. Even if this information is available, a pri-
ori, it may not always be obvious which subpopulations re-
quire special attention. In contrast, multiaccuracy allows us
to protect a rich class of overlapping subpopulations with-
out explicit knowledge of the vulnerable populations. An in-
teresting direction for future investigation could try to pair

multiaccuracy auditing (to identify subpopulations in need
of protection) with the decoupled classification techniques
of (Dwork et al. 2017).

The present work, along with (Hébert-Johnson et al. 2018;
Kearns et al. 2017; Kim, Reingold, and Rothblum 2018),
can be viewed as studying information-fairness tradeoffs
in prediction tasks (i.e. strengthening the notion of fair-
ness that can be guaranteed using a small sample). These
works fit into the larger literature on fairness in learning
and prediction tasks (Dwork et al. 2012; Zemel et al. 2013;
Buolamwini and Gebru 2018; Hardt, Price, and Srebro 2016;
Dwork et al. 2017; Kim, Reingold, and Rothblum 2018;
Rothblum and Yona 2018), discussions of the utility-fairness
tradeoffs in fair classification (Angwin et al. 2016; Klein-
berg, Mullainathan, and Raghavan 2017; Chouldechova
2017; Chouldechova and G’Sell 2016; Corbett-Davies et al.
2017; Pleiss et al. 2017). While fairness and accountability
serve as the main motivations for developing the multiac-
curacy framework, our results may have broader interest. In
particular, multiaccuracy post-processing may be applicable
in domain adaptation settings, particularly under label distri-
bution shift as studied recently in (Lipton, Wang, and Smola
2018), but when the learner gets a small number of labeled
samples from the new distribution.

Conclusion
The multiaccuracy framework can be applied very broadly;
importantly, we can post-process any initial model f0 given
only black-box access to f0 and a small set of labeled valida-
tion data. We show that in realistic settings, post-processing
for multiaccuracy helps to mitigate systematic biases in pre-
dictors across sensitive subpopulations, even when the iden-
tifiers for these subpopulations are not given to the auditor
explicitly. In our experiments, we observe that standard su-
pervised learning optimizes for overall performance, leading
to settings where certain subpopulations incur substantially
worse error rates. Multiaccuracy provides a framework for
fairness in classification by improving the accuracy in iden-
tifiable subgroups, in a way that suffers no tradeoff between
accuracy and utility. We demonstrate – both theoretically
and empirically – that post-processing serves as an effective
tool for improving the accuracy across important subpopu-
lations, and does not harm the populations that are already
classified well.

Multiaccuracy works to the extent that the auditor can
identify specific subgroups where the original classifier f0

tends to make mistakes. The power of multiaccuracy lies in
the fact that in many settings, we can identify issues with f0

from a small amount of audit data. Thus, multiaccuracy au-
diting is limited: if the mistakes appear overly-complicated
to the bounded auditor, then the auditor will not be able
to identify these mistakes. Our empirical results suggest,
that the subpopulations on which a classifier errs may be
efficiently-identifiable. This observation may be of interest
beyond the context of fairness. In particular, our experiments
improving the accuracy of a model trained on CelebA on the
PPB test sets suggests a lightweight black-box alternative to
more sophisticated transfer learning techniques, which may
warrant further investigation.
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A Additional Experiments
Multiaccuracy auditing and post-processing is applicable
broadly in supervised learning tasks, not just in image clas-
sification applications. We demonstrate the effectiveness of
MULTIACCURACY BOOST in two other settings: the adult
income prediction task and a semi-synthetic disease predic-
tion task.

Adult Income Prediction For the first case study, we uti-
lize the adult income prediction data set (Kohavi 1996) with
45,222 samples and 14 attributes (after removing subjects
with unknown attributes) for the task of binary prediction of
income more than $50k for the two major groups of Black
and White. We remove the sensitive features of gender – fe-
male (F) and male (M) and race (for the two major groups)
– black (B) and white (W) – from the data, to simulate set-
tings where sensitive features are not available to the algo-
rithm training. We trained a base algorithm, f0, which is a
neural network with two hidden layers on 27,145 randomly
selected individuals. The test set consists of an independent
set of 15,060 persons.

We audit using a decision tree regression model (max
depth 5) Adt to fit the residual f(x) − y(x). Adt receives
samples of validation data drawn from the same distribution
as training; that is D = D0. In particular, we post-process
with 3,017 individuals sampled from the same adult income
dataset (disjoint from the training set of f0). The auditor is
given the same features as the original prediction model, and
thus, is not given the gender or race of any individual. We
evaluate the post-processed classifier on the same indepen-
dent test set. MULTIACCURACY BOOST converges in 50
iterations with η = 1.

As a baseline, we trained four separate neural networks
with the same architecture as before (two hidden layers) for
each of the four subgroups using the audit data. As shown in
Table 2, multiaccuracy post-processing achieves better ac-
curacy both in aggregate and for each of the subgroups. Im-
portantly, the subgroup-specific models requires explicit ac-
cess to the sensitive features of gender and race. Training a
classifier for each subgroup, or explicitly adding subgroup
accuracy into the training objective, assumes that the sub-
group is already identified in the data. This is not feasible
in the many applications where, say, race or more granu-
lar categories are not given. Even when the subgroups are
identified, we often do not have enough samples to train ac-
curate classifiers on each subgroup separately. This example
illustrates that multiaccuracy can help to boost the overall
accuracy of a black-box predictor in a data efficient manner.

Semi-Synthetic Disease Prediction We design a disease
prediction task based on real individuals, where the pheno-
type to disease relation is designed to be different for dif-
ferent subgroups, in order to simulate a challenging set-
ting. We used 40,000 individuals sampled from the UK
Biobank (Sudlow et al. 2015). Each individual contains 60
phenotype features. To generate a synthetic disease outcome
for each subgroup, we divided the data set into four groups
based on gender – male (M) and female (F) – and age –

All F M B W BF WM
D 100 32.3 67.7 9.7 90.3 4.8 62.9
f0 19.3 9.3 24.2 10.5 20.3 4.8 24.9

MA 14.7 7.2 18.3 9.4 15.0 4.5 18.3
SS 19.7 9.5 24.6 10.5 19.9 5.5 25.3

Table 2: Results for Adult Income Data Set D denotes the
percentages of each population in the data distribution; f0

denotes the classification error (%) of the initial predictor;
MA denotes the classification error (%) of the model af-
ter post-processing with MULTIACCURACY BOOST; SS de-
notes the classification error (%) of the subgroup-specific
models trained separately for each population.

young (Y) and old (O). For each subgroup, we create syn-
thetic binary labels using a different polynomial function
of the input features with different levels of difficulty. The
polynomial function orders are 1, 4, 2, and 6 for OF, OM,
YF, and YM subgroups respectively.

For f0, we trained a neural network with two hidden lay-
ers on 32,000 individuals, without using the gender and
age features. Hyperparameter search was done for the best
weight-decay and drop-out parameters. The f0 we discover
performs moderately well on every subpopulation, with the
exception of old females (OF) where the classification error
is significantly higher. Note that this subpopulation had the
least representation in D0. Again, we audit using Adt to run
decision tree regression with validation data samples drawn
from D = D0. Specifically, the auditor receives a sample
of 4,000 individuals without the gender or age features. As
a baseline, we trained a separate classifier for each of the
subgroups using the same audit data. As Table 3 shows,
MULTIACCURACY BOOST significantly lowers the classi-
fication error in the old female population.

All F M O Y OF YM
D 100 39.6 60.4 34.6 65.4 15.0 40.7
f0 18.9 29.4 12.2 21.9 17.3 36.8 12.8

MA 16.0 24.1 10.7 16.4 15.7 26.5 11.6
SS 19.5 32.4 11.0 22.1 18.1 37.6 11.3

Table 3: Results for UK Biobank semi-synthetic data
set. D denotes the percentages of each population in
the data distribution; f0 denotes the classification error
(%) of the initial predictor; MA denotes the classifica-
tion error (%) of the model after post-processing with
MULTIACCURACY BOOST; SS denotes the classification er-
ror (%) of the subgroup-specific models trained separately
for each population.



B Formal Guarantees of Multiaccuracy
Additional notation. We use `D(f ; y) = Ex∼D[`x(f ; y)]
to denote the expected cross-entropy loss of f on x ∈ X
where `x(f ; y) = −y(x) · log(f(x))− (1− y(x)) · log(1−
f(x)). We use the inner product 〈h, g〉 = Ex∼D[h(x) · g(x)]

and the p-norms ‖h‖p = (Ex∼D[|h(x)|p])1/p.

Multiaccuracy and classification error
Here, we prove Proposition 1.

Proposition (Restatement of Propostion 1). Let ŷ : X →
{−1, 1} as ŷ(x) = 1 − 2y(x). Suppose that for S ⊆ X
with Prx∼D[x ∈ S] ≥ γ, there is some c ∈ C such
that ‖c− ŷS‖1 ≤ τ . Then if f is (C, α)-multiaccurate,
erS(f ; y) ≤ 2 · (α+ τ)/γ.

Proof. For i, j ∈ {0, 1}, let Sij ={
x ∈ S : y(x) = i ∧ f̄(x) = j

}
. Further denote

βij = Prx∼D[x ∈ Sij ]. Note that the classification
error on a set S is erS(f ; y) ≤ (β01 + β10)/γ.

Let ŷ(x) = 1− 2y(x) and suppose c(x) = ŷ(x)S + z(x)
where ‖δ‖1 ≤ τ . Then, we derive the following inequality.

E
x∼D

[c(x) · (f(x)− y(x))] (3)

= E
x∼D

[ŷ(x)S · (f(x)− y(x))] + E
x∼D

[z(x) · (f(x)− y(x))]

(4)
≥ β01 · E

x∼S01

[f(x)− y(x)] + β10 · E
x∼S10

[y(x)− f(x)]− τ

(5)

where (5) follows by Hölder’s inequality, from the fact that
the contribution to the expectation of (1− 2y(x)) · (f(x)−
y(x)) from S00 and S11 is lower bounded by 0, and by the
definition ŷS(x) = 0 for x 6∈ S. Further, because we know
any x ∈ S01 ∪ S10 is misclassified, we can lower bound the
contribution by 1/2. Thus, if Ex∼D[c(x) · (f(x)− y(x))] ≤
α, then by rearranging we conclude

erS(f ; y) = (β01 + β10)/γ ≤ 2 · (α+ τ)/γ. (6)

Theorem 2 follows by a similar argument.

Theorem (Restatement of Theorem 2). Let α, β, γ > 0 and
S ⊆ X be a subpopulation where Prx∼D[x ∈ S] ≥ γ.
Suppose for A audits the characteristic function χS(x) and
its negation. Let f : X → [0, 1] be the output of Algorithm 1
when given f0 : X → [0, 1], A, and 0 < α ≤ βγ as input.
Then the classification error of f on the subset S is bounded
as

erS(f ; y) ≤ 3 · erS(f0; y) + 4β. (7)

Proof. Suppose that erS(f0; y) ≤ τ . Consider S1 =
{x ∈ S : f0(x) > 1/2}; suppose erS1

(f0; y) = τ1.
By assumption, −χS(x) is audited on X1. Consider

Ex∼S1 [−χS(x) · (f(x)− y(x))].

E
x∼S1

[−χS(x) · (f(x)− y(x))] (8)

= E
x∼S1

[y(x)− f(x)] (9)

= Pr
x∼S1

[y(x) = 1] · E
x∼S1

y(x)=1

[1− f(x)]

− Pr
x∼S1

[y(x) = 0] · E
x∼S1

y(x)=0

[f(x)] (10)

≥ Pr
x∼S1

[y(x) = 1 ∧ f̄(x) = 0] · E
x∼S1

y(x)=1
f̄(x)=0

[1− f(x)]− τ1

(11)

≥ 1

2
Pr
x∼S1

[y(x) = 1 ∧ f̄(x) = 0]− τ1 (12)

where (11) follows from applying Hölder’s inequality and
the assumption that erS1(f0; y) = τ1; and (12) follows
from lower bounding the contribution to the expectation
based on the true label and the predicted label. Note that
Prx∼S [x ∈ S1] · Ex∼S1

[y(x) − f(x)] ≤ α/γ = β by the
fact that f passes multiaccuracy auditing by A and the as-
sumption that Prx∼D[x ∈ S] ≥ γ. Rearranging gives the
following inequality

erS1
(f ; y) ≤ 2β

Prx∼S [x ∈ S1]
+ 3τ1 (13)

where the additional τ1 comes from accounting for the false
positives.

A similar argument holds for S0 with erS0(f0; y) = τ0,
using χS(x). We can expand erS(f ; y) as a convex combi-
nation of the classification error over S0 and S1.

erS(f ; y) (14)
= Pr
x∼S

[x ∈ S0] · erS0(f ; y) + Pr
x∼S

[x ∈ S1] · erS1(f ; y)

(15)

≤ Pr
x∼S

[x ∈ S0] · Pr
x∼S0

[y(x) 6= f̄(x)]

+ Pr
x∼S

[x ∈ S1] · Pr
x∼S1

[y(x) 6= f̄(x)] (16)

≤ Pr
x∼S

[x ∈ S0] ·
(

3τ0 +
2β

Prx∼S [x ∈ S0]

)
+ Pr
x∼S

[x ∈ S1] ·
(

3τ1 +
2β

Prx∼S [x ∈ S1]

)
(17)

= 3 ·
(

Pr
x∼S

[x ∈ S0] · τ0 + Pr
x∼S

[x ∈ S1] · τ1
)

+ 4β (18)

≤ 3τ + 4β (19)

by the fact that S is partitioned into S0 and S1 and τ is a
corresponding convex combination of τ0 and τ1.

Analysis of Algorithm 1
Here, we analyze the sample complexity and running time
of Algorithm 1.
Theorem 3. Let α, δ > 0 and suppose A agnostic learns
a class C ⊆ [−1, 1]X of dimension d(C). Then, using η =



O(α), Algorithm 1 converges to a (C, α)-multiaccurate hy-

pothesis fT in T = O
(
`D(f0;y)
α2

)
iterations from m =

Õ
(
T · d(C)+log(1/δ)

α2

)
samples with probability at least 1−δ

over the random samples.

Sample complexity
We essentially assume the sample complexity issues away
by working with the notion of dimension. We give an ex-
ample proof outline of a standard uniform convergence ar-
gument using metric entropy as in (Boucheron, Lugosi, and
Massart 2013).
Lemma. Suppose C ⊆ [−1, 1]X has ε-covering number
Nε = N (ε, C, ‖·‖1). Then, with probability at least 1− δ,∣∣∣∣∣ 1

m

m∑
i=1

(c(xi)y(xi))− E
x∼D

[c(x)y(x)]

∣∣∣∣∣ ≤ O (α) (20)

provided m ≥ Ω̃
(

log(NΘ(α)/δ)

α2

)
.

Proof. The lemma follows from a standard uniform conver-
gence argument. First, observe that because every c : X →
[−1, 1] and y ∈ {0, 1} that the empirical estimate using
m samples has sensitivity 1/m. Thus, we can apply Mc-
Diarmid’s inequality to show concentration of the following
statistic.

sup
c∈C

∣∣∣∣∣ 1

m

m∑
i=1

(c(xi)y(xi))− E
x∼X

[c(x)y(x)]

∣∣∣∣∣ (21)

Then, using a standard covering argument, for N =
N (ε, C, ‖·‖1) the ε-covering number, we can bound
the deviation with high probability. Specifically, taking
O
(

log(N/δ)
α2

)
samples guarantees that the empirical esti-

mate for each c ∈ C will be within O(α) with probabil-
ity at least 1 − δ. Taking δ small enough to union bound
against every iteration and adjusting constants shows gives
the lemma.

Note that this analysis is completely generic, and more
sophisticated arguments may improve the resulting bounds
that leverage structure in the specific C of interest.

Convergence analysis
We will track progress of Algorithm 1 by tracking the ex-
pected cross-entropy loss. We show that every update makes
the expected cross-entropy loss decrease significantly. As
the loss is bounded below by 0, then positive progress at
each iteration combined with an upper bound on the initial
loss gives the convergence result.

Note that when we estimate the statistical queries from
data, we only have access to approximate answers. Thus, per
the sample complexity argument above, we assume that each
statistical query is α/4-accurate. Further, we will update ft
if we find an update ct where 〈ct, f − y〉 ≥ 3α/4. Thus, at
convergence, it should be clear that the resulting hypothesis
will be (C, α)-multiaccurate. The goal is to show that this
way, MULTIACCURACY BOOST converges quickly.

Lemma. Let α > 0 and suppose C ⊆ [−1, 1]X . Given
access to statistical queries that are α/4-accurate, Algo-
rithm 1 converges to a (C, α)-multiaccurate hypothesis in

T = O
(
`D(f0;y)
α2

)
iterations.

We state this lemma in terms of a class C but the proof
reveals that any nontrivial update that A returns suffices to
make progress.

Proof. We begin by considering the effect of the multiplica-
tive weights update as a univariate update rule. Suppose
we use the multiplicative weights update rule to compute
ft+1(x) to be proportional to ft(x)·e−ηct(x) for some ct(x).
We can track how `x(f ; y) changes based on the choice of
ct(x).

`x(ft; y)− `x(ft+1; y)

= y(x)·log

(
ft+1(x)

ft(x)

)
+(1−y(x))·log

(
1− ft+1(x)

1− ft(x)

)
(22)

Recall ft(x) = qt(x)
1+qt(x) , so 1 − ft(x) = 1

1+qt(x) . Thus, we
can rewrite (22) as follows.

(22) = y(x) · log

(
qt+1(x)

qt(x)

)
+ (1− y(x)) · log

(
1

1

)
− log

(
1 + qt+1(x)

1 + qt(x)

)
(23)

= −ηct(x)y(x) + 0− log

(
1 + qt+1(x)

1 + qt(x)

)
(24)

where (24) follows by the multiplicative weights update rule
implies qt+1(x) = e−ηct(x)qt(x) for x ∈ St. Next, we ex-
pand the final logarithmic term.

− log

(
1 + qt+1(x)

1 + qt(x)

)
(25)

=− log

(
1 + qt(x)e−ηct(x)

1 + qt(x)

)
(26)

≥− log

(
1 + qt(x)(1− ηct(x) + η2ct(x)2)

1 + qt(x)

)
(27)

≥− log

(
1− qt(x)

1 + qt(x)
(ηct(x)− η2ct(x)2)

)
(28)

≥ηct(x)ft(x)− η2ct(x)2 (29)

where (27) follows by upper bounding the Taylor series ap-
proximation for ez for z ≥ −1; and (29) follows by the fact
that ft(x) ∈ [0, 1]. Combining the expressions, we can sim-
plify as follows.

(24) ≥ −ηct(x)y(x) + ηct(x)ft(x)− η2ct(x)2 (30)

= ηct(x) · (ft(x)− y(x))− η2ct(x)2 (31)

Thus, we can express the change in `x(ft; y) − `x(ft+1; y)
after an update based on ct(x) in terms of the inner product
between ct and f − y. In this sense, we can express the local
progress during the update at time t in terms of some global
progress in the objective.



When we update x ∈ X simultaneously according to c,
we can express the change in expected cross-entropy as fol-
lows.

`D(ft; y)− `D(ft+1; y) (32)

≥ η · E
x∼X

[ct(x) · (ft(x)− y(x))]− η2 · E
x∼X

[ct(x)2]

(33)

≥ η〈ct, ft − y〉 − η2 (34)
≥ η(α/2− η) (35)

where (35) follows from the fact that we assumed that our
estimates of the statistical queries were α/4-accurate and
that we update based on ct if 〈ct, f − y〉 is at least 3α/4
according to our estimates. Thus, taking η = α/4, then we
see the change in expected cross-entropy over X is at least
α2/16, which shows the lemma.

Linear convergence from gradient learning

Here, we propose auditing with an algorithm A` that
aims to learn a smoothed version of the partial deriva-
tive function of the cross-entropy loss with respect to
the predictions ∂`(f ;y)

∂f(x) = 1
1−f(x)−y(x) , which grows in

magnitude as |f(x)− y(x)| grows. We show that running
MULTIACCURACY BOOST with A` converges in a number
of iterations that grows with log(1/α), instead of polyno-
mially, as we would expect for a smooth, strongly convex
objective (Shalev-Shwartz and others 2012; Bubeck and oth-
ers 2015). This application of MULTIACCURACY BOOST is
similar in spirit to gradient boosting techniques (Mason et
al. 2000; Friedman 2001), which interpret boosting algo-
rithms as running gradient descent on an appropriate cost-
functional.

In principle, if the magnitude of the residual
|f(x)− y(x)| is not too close to 1 for most x ∈ X ,
then the learned partial derivative function should correlate
well with the true gradient. Consider the following auditor
A`. We assume the norms and inner products are estimated
accurately using D ∼ Dm.

We claim that this auditor learns the partial derivative
function in a way that guarantees linear convergence.

Proposition 4. Let α,B,L > 0 and C ⊆ [−B,B]X . Sup-
pose we run Algorithm 1 on initial model f0 with auditor
A` defined in Algorithm 2. Then, Algorithm 1 converges in
T = O (L · log(`D(f0; y)/α)) iterations.

Proof. Note that when A` returns h(x) = 0, then Algo-
rithm 1 terminates. Thus, we will bound the number of iter-
ations until `D(f ; y) at most than α. For notational conve-
nience, we denote∇f `D(f ; y) as∇f `.

By the definition of ε and the termination condition, we
know that if A` returns hf (x) 6= 0 then hf satisfies the fol-

Algorithm 2: A` – smooth cross-entropy auditor
Given:
• hypothesis f : X → [0, 1];
• class of functions C ⊆ [−B,B]X ;

accuracy parameter α > 0;
• smoothing parameter L;
• validation data D ∼ Dm;
Let:

• ε← 〈∇f `,f−y〉2

‖∇`‖2‖f−y‖2
// approx factor from angle between
grad and f-y

• H ←
{
h ∈ C : ‖h‖2 ≤ L · `(f ; y)

}
// audit over l2-bounded version of

C

• hf ← argminh∈H ‖h−∇f `(f ; y)‖2

if `(f ; y) ≤ α or ‖hf −∇f `(f ; y)‖2 > ε
2 · ‖∇f `(f ; y)‖2:

return h(x) = 0
// cross-entropy small or hf bad

approx to deriv
else:

return hf

lowing inequality.

‖hf −∇f `‖2 ≤
1

2
· 〈∇f `, f − y〉

2

‖f − y‖2
(36)

≤ 1

2
· 〈∇f `, f − y〉

2

‖f − y‖2
+

1

16
‖∇f `‖2 (37)

=

∥∥∥∥∥ 〈∇f `, f − y〉‖f − y‖2
(f − y)− ∇f `

4

∥∥∥∥∥
2

(38)

Using this inequality, we can bound the inner product be-
tween hf and f − y.

〈hf , f − y〉 (39)
= 〈∇f `, f − y〉+ 〈hf −∇f `, f − y〉 (40)
≥ 〈∇f `, f − y〉

−

∥∥∥∥∥ 〈∇f `, f − y〉‖f − y‖2
(f − y)− ∇f `

4

∥∥∥∥∥ · ‖f − y‖ (41)

≥ 〈∇f `, f − y〉 − 〈∇f `, f − y〉 ·
‖f − y‖2

‖f − y‖2

+
1

4
· 〈∇f `, f − y〉 (42)

≥ 1

4
· `D(f ; y) (43)

where (42) follows from the fact that ∇f ` and f − y are
positively correlated; and (43) follows by convexity of `D.

Thus, using the analysis of the multiplicative weights up-
date from earlier, we can see that the progress in cross-



entropy can be bounded as

`D(ft; y)− `D(ft+1; y) ≥ η

4
· `D(ft; y)− η2 · ‖hft(x)‖2

(44)

≥ (
η

4
− η2L) · `D(ft; y) (45)

where (45) follows from the fact that hf is drawn from a
class with Euclidean norm bounded as ‖hf‖2 ≤ L·`D(f ; y).

Rearranging and taking η = 1
8L , we arrive at the follow-

ing inequality that implies linear convergence.

`D(ft+1; y) ≤ (1− η

4
+ η2L)`D(ft; y) (46)

≤ e−1/64L`D(ft; y) (47)

Thus, afterO (L · log(`D(f0; y)/α)), then the cross-entropy
will drop below α.


