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Abstract

Recent studies indicate that people are negatively pre-
disposed toward utilizing autonomous systems. These
findings highlight the necessity of conducting research
to better understand the evolution of trust between hu-
mans and growing autonomous technologies such as
self-driving cars (SDC). This research presents a new
approach for real-time trust measurement between pas-
sengers and SDCs. We utilized a new structured data col-
lection approach along with a virtual reality SDC sim-
ulator to understand how various autonomous driving
scenarios can increase or decrease human trust and how
trust can be re-built in the case of incidental failures. To
verify our methodology, we designed and conducted an
empirical experiment on 50 human subjects. The results
of this experiment indicated that most subjects could re-
build trust during a reasonable time frame after the sys-
tem demonstrated faulty behavior. Our analysis showed
that this model is highly effective for collecting real-time
data from human subjects and lays the foundation for
more-involved future research in the domain of human
trust and autonomous driving.

I - Introduction
Recent studies indicate that people have negative at-
titudes toward utilizing autonomous platforms (Kyri-
akidis, Happee, and De Winter 2015; Hancock et al.
2011). Furthermore, with the exponential growth and
the increase in the complexity of autonomous systems
in the 21st century, managing the trust of users in such
systems has become an important concept when de-
signing new AI and autonomous systems. Numerous
studies in the domain of trust and AI have suggested
that the management and the constant improvement of
this mutual trust between autonomous systems and their
users will be one of the primary challenges the indus-
try professionals will face when trying to popularize
the use of fully autonomous systems (Koo et al. 2015;
Choi and Ji 2015; Beer, Fisk, and Rogers 2014). These
discoveries highlight the necessity and urgency of con-
ducting research to better understand the evolution of
trust between humans and growing autonomous tech-
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nologies, and to provide technologies that are respon-
sive to human trust.

A concrete example of a trust management problem
is the systematic maintenance of trust in self-driving
cars (SDCs). Car manufacturers and tech giants (e.g.,
Tesla, Mercedes Benz, GM, Volvo, Waymo, Intel, etc.)
have successfully manufactured semi-autonomous cars,
and have been working on level-4 and level-5 fully au-
tonomous prototypes since the early 2010s. Many of
these corporations have projected the mass production
of SDCs in the early 2020’s (Ross 2017; Sage and
Lienert 2016; Gaudin 2012). Their major challenge in
the upcoming years will be to attract the attention of av-
erage consumers in the US and around the world, who
have high expectations, but at the same time, a high
level of distrust in fully automated SDCs (Carlson et
al. 2014).

According to a World Economic Forum study, con-
sumers are very reluctant to consider purchasing, or
even trying autonomous vehicles. Safety, control, and
faulty behavior of the autonomous car are some of the
many concerns the consumers expressed. With the re-
cent trust damaging, fatal car accidents involving SDCs
by Tesla and Uber (Tes ) (Ube ), the need for additional
research to provide a safer test environment and manag-
ing human-machine trust becomes more important than
ever. New research objectives and innovative method-
ologies can potentially provide a robust platform to de-
velop autonomous vehicles that perform well and are
trustworthy.

In the domain of trust, AI, and autonomous systems,
the literature related to trust is very broad. Very little re-
search has been conducted on physiological responses
and fluctuations in the trust levels of passengers of
SDCs (Shahrdar, Menezes, and Nojoumian 2018). Fur-
thermore, most research in this area has utilized online
surveys and primitive simulations for their experiments
rather than realistic, immersive simulations 1. The open
questions and the gaps in the current literature moti-
vated us to attempt to contribute to filling these gaps by
designing an empirical experiment to measure the trust-

1In this phase of our research, we did not use any devices
to measure physiological responses.



worthiness of a simulated SDC. By implementing an
immersive VR simulation, which uses real VR driving
videos, and utilizing an advanced trust self-reporting
software that we developed, we intended to collect ac-
curate data from test subjects. We asked the participants
to use our trust self-reporting tool after they experience
different simulated SDC driving segments. We believe
that our investigation and its outcome will contribute to
the general understanding of factors affecting trust and
satisfaction among passengers of SDCs.

In this paper we will describe the design, the pro-
cedure and the outcome of the empirical experiment
that we have conducted. Section II illustrates our re-
search methodology. In Section III, the detailed simula-
tion setup and its technical configurations are described.
Section IV covers the experimental design. The results
of our research are presented in Section V. Finally, in
Section VI, we end the paper with the concluding re-
marks and the future direction of our research.

II - Human-Inspired Trust Modeling:
Research Methodology

Novelty of Our Approach
The sequential and structured data collection, various
trust states, and the realistic simulation platform are
novel aspects of our research methodology. Our data
was collected based on a limited (to avoid allowing
our human subjects to provide inaccurate responses)
sequence of trust-building/damaging incidents that af-
fect each other. This helped us understand how the
human mind goes from one specific trust-state to an-
other one in a sequence of events. We utilize specific
templates from (Nojoumian 2015) to form these inci-
dents. Although most approaches (Akash et al. 2017;
Hu et al. 2016) utilize two forms of responses from sub-
jects (distrust and trust), we consider a fuzzy set of trust
states (distrust, somehow distrust, neutral, somehow
trust, and trust). In many “trust-in-autonomy” projects
subjects were asked to respond to questions in a sur-
vey or interact with an algorithm to express their inputs
(Shahrdar, Menezes, and Nojoumian 2018), while our
SDC simulator is fully immersive.

Sequential and Structured Data Collection
Using a structured and sequential data collection ap-
proach, we intended to understand how humans gain or
lose trust in autonomous vehicles and how trust escala-
tion or reduction can be controlled in various incidents
as well as among different groups of people (i.e, young,
mid-age and senior). Our collected data can be trans-
formed into specifications to be used in the controllers
of autonomous vehicles. Note that demographic data
and past psychological data are collected prior to our
experiments to characterize our human subjects regard-
ing self-confidence, trusting attitude, risk-acceptance,
past unpleasant experiences, and other traits because
these factors impact the outcome of our research. Seg-
ments are categorized into five distinct groups:

1. Initial Trust: Segments that aim to capture the initial
trust of the passengers in the first few minutes of the
first interaction.

2. Trust Escalation: Segments that illustrate a se-
quence of incidents in which human subject’s trust is
increased. e.g., 2 minutes of smooth and predictable
driving by the SDC without any complications or sur-
prises.

3. Trust Reduction: Segments that illustrate a se-
quence of incidents in which the human subject’s
trust is decreased, for example, when the SDC cuts
off another controlled vehicle.

4. Trust Mutation: A sequence of mild incidents (e.g.,
a rapid lane change by the SDC) followed by critical
incidents (e.g., stop-sign violation or tailgating by the
SDC) and vice versa, can be negative or positive in-
cidents.

5. Re-Building Trust: Segments that demonstrate how
trust can be rebuilt; for example, the SDC performs
smoothly for a reasonable period of time after trust-
damaging incidents.

III - Simulation Setup
Our simulator (Figure 1) is a safe platform to expose
human subjects to any trust-damaging incident, includ-
ing but not limited to, sharp turns, sudden stops, stop-
light violations, speeding, tailgating, unexpected acci-
dent, etc. The SDC virtual reality simulator is based on
fusion of an Oculus Rift headset with an Atomic A3
Full Motion Simulator. Figure 1 shows a participant in
the simulator.

Figure 1: Participant using the SDC simulator.

360 degree video of driving situations were recorded
using the GoPro Fusion Camera and edited using the
GoPro Fusion Studio. To capture interesting driving
footage and trust damaging scenarios, the team mem-
bers recorded 360 degree videos of everyday driving
for the duration of a month. These videos were later
analyzed, edited, and categorized to be used in the
SDC simulation. Team members also choreographed



and recorded driving segments ( i.e. near collisions be-
tween two cars) in safe environments with no outside
traffic.

The Oculus Rift head set outputs 1080x1200 resolu-
tion per eye, at a 90 Hz refresh rate, a 110 degree field
of view, and has headphones which output a 3D audio
effect (gop ). The participant also wears noise cancel-
ing ear muffs over the headphones to eliminate outside
noise. While wearing the Oculus Rift VR headset the
participant can freely move their head 360 degrees to
see the complete scene. See Figure 2 for the view of a
scene in the simulation.

Figure 2: View from inside the simulation, each frame
represents the participant’s view as they turn their head
to look around, illustrating the 360-degree view inside

the VR simulator.

The Atomic A3 Full Motion Simulator can move
up to 71 degrees per second across a full 27 degree
dual-axis movement range (ato ). The combination of
complete visual, audio, and movement immersion pro-
vides a convincingly realistic simulation. The Atomic
A3 Simulator receives telemetry data that has pitch val-
ues for front and back movements and roll values for
left and right movements.

SimTools motion simulator software was used to
send the telemetry data for each video to the Atomic
A3 motion simulator via UDP packets. The “Video Ride
Creator” plug-in was used to generate telemetry points
for every frame in the simulation videos (Sim ).

The simulator plays the audio, video, and telemetry
files synchronously. After each segment, the participant
is presented with a Likert Scale that appears inside the
Oculus Rift. The participant selects their response by
focusing their gaze on the desired answer for five sec-
onds while wearing the Oculus Rift. Figure 3 shows a
sample question in the virtual reality space.

VR sickness is a known phenomenon in which peo-
ple experience symptoms that are very similar to motion
sickness. Symptoms include headache, general discom-
fort, nausea, vomiting and vertigo (LaViola Jr 2000). To
mitigate these effects the motion output of the simula-
tor was closely monitored, and subjects were not kept
in the simulation for longer then 15 minutes.

To play 360 degree 4K resolution videos in each lens
of the Oculus Rift requires a machine with powerful
processing. To meet these demands the application is

Figure 3: Stare-and-select tool interface.

executed on an AlienWare Area-51 Desktop equipped
with an Intel Core i7-5960X processor along with dual
NVIDIA GeForce GTX Titan Z graphics cards that
achieves clock speeds greater than 4 Ghz. This high per-
formance machine allows for the dual 360 degree 4k
videos to be played smoothly and seamlessly.

IV - Experimental Design
Prior to the simulation, participants were asked to an-
swer 17 demographic and psychological questions by
filling out an anonymous survey. Participants were ran-
domly placed in one of two possible SDC simulation
scenarios. Each scenario is made up of 5 segments. Ta-
bles 1 and 2 define the scenario and segment pairings.
Specific scenario-segment pairs are denoted with a two
letter abbreviation followed by the scenario and seg-
ment numbers, for example TRI−II denotes trust reduc-
tion segment 2 of scenario 1. Each segment starts with
an exposure to an approximately 2 minute SDC driv-
ing simulation followed by a response interval to the
question “On a scale of 1-5 with 1 being the lowest and
5 being the highest, after this simulation, what is your
level of trust in the self-driving car?”. After the partici-
pant responds, the application moves on to the next seg-
ment until the simulation scenario is complete. Differ-
ent videos are used across driving scenarios.

Table 1: Simulation Scenario 1

ITI−I Initial Trust
TRI−II Trust Reduction
TRI−III Further Trust Reduction
NMI−IV Negative Trust Mutation
RTI−V Rebuild Trust

Table 2: Simulation Scenario 2

ITII−I Initial Trust
TEII−II Trust Escalation
TRII−III Trust Reduction
NMII−IV Negative Trust Mutation
RTII−V Rebuild Trust



An initial trust/trust escalation segment involved the
SDC moving slowly and predictably while adhering to
the rules of the road. A trust reduction segment involved
the SDC along with Human-Driving Cars (HDC) mov-
ing erratically and unpredictably, breaking rules of the
road including speeding, tailgating, and sudden lane
changes. In the NMI−IV segment, the SDC ran through
a non-visible stop sign and nearly collided with another
car and then proceeded to drive through a residential
neighborhood. In the NMII−IV segment, the SDC ran
through a stop sign unexpectedly and detected a pedes-
trian and a bicyclist crossing a crosswalk and abruptly
came to a stop. A rebuild trust segment involved the
SDC driving defensively and adhering to rules of the
road. Note that HDCs were involved in all scenarios.

It is predicted that after the initial trust/trust escala-
tion segments, the participants will respond with high
levels of trust in the SDC, and after trust reduction seg-
ments, the participant will respond with low levels of
trust in the SDC. It is also predicted that after the nega-
tive trust mutation segment, the participant will report a
drastic decrease in trust.

V - Results

Fifty human subjects were recruited to participate in the
10 minute VR autonomous driving simulation2. 84% of
the participants were male and between the ages of 18-
30. Ethnically the participants identified as 60% White,
20% Hispanic/Latino, 12% Black/African American,
and 6% as Other. Half of the participants were randomly
selected to be in Scenario 1, and the other half were as-
signed to Scenario 2. Full findings detailing how demo-
graphic and psychological data affect trust levels in the
SDC simulator will be detailed in the final journal pub-
lication.

Scenario 1

Figure 4 shows the mean trust levels participants re-
ported after each segment in scenario 1. In the ini-
tial trust segment (ITI−I), participants responded with
an average score of 4.52±0.17, followed by a mean
score of 3.60±0.23 in the first trust reduction seg-
ment (TRI−II). After exposure to further trust reduction
(TRI−III), the score increased slightly to 3.84±0.19,
followed by a large decline to 2.28±0.23 when exposed
to negative trust mutation (NMI−IV). Finally, trust lev-
els increased to 4.08±0.19 in the rebuild trust (RTI−V)
segment. The most obvious change across segments
was between the negative trust mutation (NMI−IV) and
the initial trust segment (ITI−I), consistent with our
expectations that erratic driving has the potential to
severely reduce trust.

2IRBNET ID #: 1187756-1

Figure 4: Mean Trust Levels Across Segments in
Scenario 1

To assess whether the observed scores are statistically
different, the Wilcoxon Rank Sum Test was performed
across segments; the resulting p-values are shown in
Figure 5. Here, we see that scored changes in trust
are not distinguishable above the 0.05 p-value between
TRI−II and TRI−III, RTI−V and TRI−II, and RTI−V

and TRI−III. All other comparisons show statistically
significant changes in trust.

Figure 5: Wilcoxon Rank Sum Test P-Values Across
Segments in Scenario 1

Scenario 1 performed as expected. Participants
scored the initial trust and rebuild trust segments with
high levels of trust, the trust reduction segments with
lower levels of trust, and the negative trust mutation seg-
ment with the lowest level of trust. It is interesting that
mean values of trust appear to have slightly increased in
TRI−III, a segment designed to elicit further trust reduc-
tion. This may be due to participants perceiving TRI−II

to be more dangerous in comparison to TRI−III, how-
ever the difference between the two is within the stan-
dard error and statistically insignificant. As expected,
the negative trust mutation had the lowest trust levels
and was significantly lower than all other segments.
This indicates the simulations effectiveness in reducing
participants trust.

An interesting result is the difference between the ini-
tial trust segment and the final segment designed to re-
build trust. While participants scored their level of trust
after RTI−V at 4.08±0.19, a high value, it is signif-
icantly lower than the initial trust value (4.52±0.17),
representing a 12.00% decrease. This seems to indicate



that participants trusted the SDC less after being ex-
posed to trust reducing segments.

Scenario 2
Figure 6 shows the mean trust levels participants re-
ported after each segment in Scenario 2. In the ini-
tial trust segment (ITII−I), participants responded with
an average score of 4.24±0.15, followed by a mean
score of 4.52±0.14 in the first trust escalation segment
(TEII−I). After exposure to trust reduction (TRII−III),
the score decreased to 3.36±0.20, followed by a fur-
ther decline to 3.12±0.26 when exposed to the negative
trust mutation (NMII−IV). Finally, trust levels increased
to 3.80±0.23 in the Rebuild Trust segment (RTII−V).

Figure 6: Mean Trust Levels Across Segments in
Scenario 2

Figure 7 shows the results of the Wilcoxon Rank Sum
Test across segments in Scenario 2. Here, we see that
scored changes in trust are not distinguishable above the
0.05 p-value between TEII−II and ITII−I, RTII−V and
ITII−I, NMII−IV and TRII−III, RTII−V and TRII−III,
and RTII−V and NMII−IV. All other inter-comparisons
show statistically significant changes in trust.

Figure 7: Wilcoxon Rank Sum Test: P-Values Across
Segments in Scenario 2

In (NMII−IV), the SDC approaches a crosswalk and
stops for a pedestrian to cross the street. This was the
only segment that involved the SDC interacting near a
pedestrian. Participants reported low levels of trust after
this segment and commented that they especially did
not trust the SDC near pedestrians.

In Scenario 2, while participants score their level of
trust after RTII−V at 3.80 ±0.23, a high value, it is
significantly lower than the initial trust segment (4.24
±0.15), representing a 13.50% decrease. This seems to
indicate that participants trusted the SDC less after be-
ing exposed to trust reducing segments.

Comparison of Scenario 1 and Scenario 2
We performed the Wilcoxon Rank Sum Test p-Value be-
tween the trust segments in Scenario 1 and Scenario 2
to investigate the fluctuations of trust levels in partici-
pants in groups 1 and 2. Figure 8 illustrates this compar-
ison. Our analysis indicated that participants from both
groups reported similar expected trust levels after posi-
tive and negative trust segments. The only major signif-
icant difference that we observed was the reported trust
levels for Negative Trust Mutation segments (NMI−IV

and NMII−IV). We believe that this is due to the fact
that the Negative Trust Mutation segment in Scenario
2 (NMII−IV) was much milder compared to the one in
Scenario 1. It mostly involved the SDC running stop
signs in a parking lot and driving near pedestrians and a
bicyclist, as opposed to speeding, almost crashing into
another car, and driving in the middle of the road in
NMI−IV. Another considerably significant trust differ-
ence can be seen in TRI−II and TEII−II. This is ex-
pected because TRI−II involves trust damaging driving
such as speeding or tailgating, as opposed to defensive,
highway driving in TEII−II.

Figure 8: Wilcoxon Rank Sum Test: P-Values in
segments from Scenario 1 vs Scenario 2

The results of the experiment were generally con-
sistent with our expectations. The participants reported
higher trust levels after experiencing initial trust and
trust escalation segments and reported distrust after the
trust reduction segments, as well as high distrust after
the negative trust mutation segment. Participants did not
trust the SDC around pedestrians. Finally, participants
in both groups were able to relatively rebuild their trust
after the trust damaging Negative Trust Mutation seg-
ments.

VI - Conclusion and Future Work
The results of the experiment indicated that the trust
levels of humans change depending on the SDCs driv-



ing style and that the majority of the participants were
able to moderately rebuild their trust in the simulated
self-driving car after faulty and erratic behaviors. The
autonomous driving style directly influences the trust of
the passengers in the system. Aggressive driving dimin-
ishes trust, and defensive, predictable driving increases
(builds) trust.

The results of our experiment matched our initial ex-
pectations. Thus, we can consider this innovative data
collection approach an adequate and a reliable tech-
nique to measure passengers level of trust and psycho-
logical responses when exposed to different driving sce-
narios. This approach lays the foundation of a wide va-
riety of future research in the context of trust, human
robot interaction, and autonomous vehicles. With the
mass production and commercialization of autonomous
vehicles in the upcoming years and the high degree of
skepticism of the average consumers in the industry, we
believe that this type of research in this domain is more
important than ever before.

In the next iterations of our research, we will improve
our SDC VR simulation scenarios by introducing seg-
ments with crucial failures such as accidents as well as
hazardous conditions such as heavy rain, storms, and
snow to see if they would have a direct impact on the
passengers trust levels. Furthermore, automatic collec-
tion of the physiological and psychological responses
(via EEG sensors, heartbeat sensors, facial recognition
modules, and others) during the simulated driving sce-
narios and analyzing them in real time are some of the
primary future research directions (Park, Shahrdar, and
Nojoumian 2018).
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