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Abstract

Equalized odds – where the true positive rates and false pos-
itive rates are equal across groups (e.g. racial groups) – is
a common quantitative measure of fairness. Equalized out-
comes – where the difference in predicted outcomes between
groups is less than the difference observed in the training
data – is more contentious, because it is incompatible with
perfectly accurate predictions. We formalize and quantify the
relationship between these two important but seemingly dis-
tinct notions of fairness. We show that under realistic assump-
tions, equalized odds implies partially equalized outcomes.
We prove a comparable result for approximately equalized
odds. In addition, we generalize a well-known previous result
about the incompatibility of equalized odds and another def-
inition of fairness known as calibration, by showing that par-
tially equalized outcomes implies non-calibration. Our results
highlight the risks of using trends observed across groups to
make predictions about individuals.

1 Introduction
Definitions of fairness – and conflicts between them – are
an important topic in recent quantitative fairness literature
(Barocas, Hardt, and Narayanan 2018). Such definitions of-
ten involve avoiding discrimination on the basis of a partic-
ular kind of group membership, such as race or gender. In a
particular situation, different definitions may be invoked by
different stakeholders (Nayaranan 2018).

The controversy associated with the COMPAS recidivism
prediction system showed this in practice. The news orga-
nization ProPublica claimed that the algorithm was unfair
because among non-reoffenders, African-Americans were
more likely to be marked high risk than whites, and among
reoffenders, whites were more likely to be marked low risk
than African-Americans (Angwin et al. 2016) – i.e. the al-
gorithm violated equalized odds. The COMPAS response
was that the algorithm was not unfair because among those
marked high risk, African-Americans were not less likely
to reoffend than whites (Dieterich, Mendoza, and Brennan
2016) – i.e. the algorithm satisfied test-fairness.

Subsequently it was shown that no algorithm can simul-
taneously satisfy both equalized odds and test-fairness un-
der realistic assumptions (Chouldechova 2017). A similar
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Table 1: Summary of main definitions and results.
Definitions
Equalized Odds
True positive rates same for each group
False positive rates same for each group
Partially Equalized Outcomes
Predicted difference between groups less than
observed difference between groups
Calibration
Predicted probability equals observed probability for each
group and each probability value

Results
Existing
Equalized Odds =⇒ Not Calibration
(Kleinberg, Mullainathan, and Raghavan 2017)
New
Equalized Odds =⇒ Partially Equalized Outcomes
Partially Equalized Outcomes =⇒ Not Calibration

result was shown in the more general setting of continuous
rather than binary risk scores (Kleinberg, Mullainathan, and
Raghavan 2017), replacing test-fairness with a related con-
cept known as calibration. Our paper generalizes this latter
result by exploring the relationship between equalized out-
comes and equalized odds, as summarized in Table 1.

1.1 Motivation for Equalized Odds
We motivate equalized odds, using recidivism prediction as
a running example (see Appendix B for a more extended dis-
cussion). Among observed non-reoffenders, we may want to
ensure that those from one group are not marked higher risk
on average than those from another group, i.e. our false pos-
itive rates for both groups are equal. This has been dubbed
equality of opportunity (Hardt, Price, and Srebro 2016). If
we also ensure that among observed reoffenders, those from
one group are not marked higher risk on average than those
from another group, we have equalized odds (Hardt, Price,
and Srebro 2016), i.e. our true positive rates for both groups
are also equal.1 It has been observed that in order to make

1Equality of true positive rates between groups is equivalent to
equality of false negative rates between groups. Equalized odds has



the relative utility of different groups more equal, abso-
lute utility may be reduced (Corbett-Davies and Goel 2018;
Corbett-Davies et al. 2017; Menon and Williamson 2018).
However, equalized odds has some intuitive appeal as a fair-
ness measure since it ensures that mistakes do not dispro-
portionately impact any group.

1.2 The Debate about Equalized Outcomes
Equality of outcomes between groups is a well-known fair-
ness criterion. It has been mathematically formalized in the
quantitative fairness literature through the concepts of statis-
tical parity (Calders and Verwer 2010; Dwork et al. 2012),
avoiding disparate impact (United States Equal Opportunity
Employment Commission 1978; Feldman et al. 2015) and
achieving independence between outcomes and group mem-
bership (Barocas, Hardt, and Narayanan 2018). These tech-
nical definitions have prompted debate about whether they
are suitable measures of fairness.

A critique of equalized outcomes is that if the observed
rates (e.g. of recidivism) are different across the two groups
in the training data, then an algorithm that reflects this dif-
ference is not ‘unfair’ but is rather a reflection of real un-
derlying differences (Hardt, Price, and Srebro 2016; Zafar et
al. 2017). The argument goes: surely we would not want to
label ‘unfair’ a prediction algorithm which is perfectly accu-
rate! The job of the algorithm is to predict the world as it is;
changing the world is out of scope.

However, not equalizing outcomes across groups creates
the risk of discrimination in situations where the data collec-
tion process systematically disadvantages one group (Baro-
cas and Selbst 2016; Zafar et al. 2017; O’Neil 2017). For
example, profiling of particular populations based on pre-
existing risk assessments can distort trends in reoffending.
Equalized outcomes may help algorithms to avoid perpetu-
ating this structural inequality. More generally, the question
of whether redistribution should be used to reduce inequality
is at the core of the left-right political divide (Jæger 2008).
As such, the debate on equalized outcomes is unlikely to be
definitively won or lost by either side.

1.3 Our Contribution
Our core contribution is to formalize and quantify the rela-
tionship between equalized odds and equalized outcomes,
two important but seemingly distinct notions of fairness.
We quantify the extent to which outcomes are equalized in
an intuitive way, via a comparison between the predicted
and observed differences between groups (Section 2). We
prove that if we want to satisfy equalized odds, we must
partially equalize outcomes – even if we only want approx-
imately equalized odds (Section 3). In addition, we gener-
alize a well-known existing result about the incompatibility
of equalized odds and a different fairness measure known as
calibration (Kleinberg, Mullainathan, and Raghavan 2017),
using a simpler proof technique (Section 4). Our conclusion
(Section 5) highlights why we should consider the reality

also been referred to as avoiding disparate mistreatment (Zafar et
al. 2017).

that algorithmic decisions are imperfect when defining mea-
sures of fairness.

2 Problem Formalization
We mathematically formalize the setting we have informally
described above. In our problem setup we have input vari-
able X ∈ X (e.g. a person’s criminal record expressed as
a real-valued vector), sensitive variable S ∈ {0, 1} encod-
ing group membership (e.g. race coded as 1 for African-
American or 0 for non African-American), target variable
Y ∈ {0, 1} (e.g. ground truth of whether the person reof-
fended), and decision variable Ŷ ∈ {0, 1} (e.g. prediction
of whether the person will reoffend). Let h : X × {0, 1} →
[0, 1] be a stochastic hypothesis, which can also be inter-
preted as a scoring function.2 Let Ŷ be constructed such that
p(Ŷ = 1|X = x, S = s) := h(x, s). While setting S, Y
and Ŷ to be binary variables is an assumption, this allows
us to cover many cases of interest – such as the recidivism
prediction example – and facilitates our analysis and inter-
pretation. The choice of input space X is arbitrary.

Drawing X , S and Y and making decision Ŷ , we have
a joint distribution µ over X × {0, 1} × {0, 1} × {0, 1}.
We may also derive marginal distributions over one or more
variables, such as the marginal distribution over Y :

µY (Y = y)

:=

∫
x∈X

∑
s∈{0,1}

∑
ŷ∈{0,1}

µ(X = x, S = s, Y = y, Ŷ = ŷ)dx.

Similarly, we may derive conditional distributions, such
as the marginal distribution over Ŷ conditioned on Y = 1:

µŶ |Y=1(Ŷ = ŷ) :=
µY,Ŷ (Y = 1, Ŷ = ŷ)

µY (Y = 1)
.

We use notation of the form p(Y = y) := µY (Y = y)

for marginals and p(Ŷ = ŷ|Y = 1) := µŶ |Y=1(Ŷ = ŷ) for

conditionals. For example, p(Ŷ = 1|Y = 1) is known as the
true positive rate (e.g. predicted reoffence rate for reoffend-
ers) and p(Ŷ = 1|Y = 0) is known as the false positive rate
(e.g. predicted reoffence rate for non-reoffenders). We use
the symbol ⊥ to denote probabilistic independence between
variables.

2.1 Impossibility Results
An impossibility result states several candidate properties of
a joint distribution, and shows that no distribution can simul-
taneously satisfy all of these properties. A well-known im-
possibility result (Theorem 1.1 of Kleinberg, Mullainathan,
and Raghavan 2017) considered the relationship between
calibration – which requires that for both groups, each risk
score accurately reflects the true risk associated with indi-
viduals assigned that score – and equalized odds. The result

2This underpins our comparisons with (Kleinberg, Mul-
lainathan, and Raghavan 2017), which analyzes risk scores. Inter-
preting such scores as decision probabilities facilitates our analysis.



showed that it is impossible to simultaneously satisfy both
fairness criteria and other realistic assumptions.

Variants exist involving approximate versions of equal-
ized odds (Theorem 1 of Pleiss et al. 2017), calibration or
both (Theorem 1.2 of Kleinberg, Mullainathan, and Ragha-
van 2017). We mentioned earlier the incompatibility of
equalized odds and test-fairness – where the risk scores
are binary and the true risk of individuals with a given
score must be the same for both groups (Chouldechova
2017). Simple rules of conditional probability may be used
to show that Ŷ⊥S|Y – corresponding to equalized odds –
and Y⊥S|Ŷ – which is closely related to calibration – can-
not both simultaneously hold under realistic assumptions
(Barocas, Hardt, and Narayanan 2018). The incompatibil-
ity of equalized odds and statistical parity (i.e. the inde-
pendence relationship Ŷ⊥S) has also been shown (Klein-
berg, Mullainathan, and Raghavan 2017; Barocas, Hardt,
and Narayanan 2018).

In our work we derive impossibility results involving
equalized outcomes and equalized odds, which are of inter-
est given the debates about these fairness criteria described
in Section 1. As we shall see in Section 4, our analysis
also allows us to generalize Theorem 1.1 of Kleinberg, Mul-
lainathan, and Raghavan 2017, exploiting the relationship
between equalized outcomes and calibration.

2.2 Fairness Definitions
We now formalize the definition of equalized odds.
Definition 1 (Equalized odds (Hardt, Price, and Srebro
2016; Zafar et al. 2017)). Equalized odds is satisfied if both
of the following hold:

p(Ŷ = 1|S = 1, Y = 1) = p(Ŷ = 1|S = 0, Y = 1) (1)

i.e. the true positive rate is the same for both groups, and

p(Ŷ = 1|S = 1, Y = 0) = p(Ŷ = 1|S = 0, Y = 0) (2)

i.e. the false positive rate is the same for both groups.

We now present a novel formalization of equalized out-
comes.
Definition 2 (Equalized outcomes). Let

p(Ŷ = 1|S = 1)− p(Ŷ = 1|S = 0)

= α(p(Y = 1|S = 1)− p(Y = 1|S = 0))
(3)

where α is a constant we refer to as the equalized out-
comes coefficient. If (3) holds for α = 0 we have fully
equalized outcomes. If (3) holds for some α ∈ (0, 1) we
have partially equalized outcomes. If (3) holds for α = 1
we have non-equalized outcomes.

Fully equalized outcomes corresponds to the well-known
definition of statistical parity (Calders and Verwer 2010;
Dwork et al. 2012), or equivalently the independence Ŷ⊥S
(Barocas, Hardt, and Narayanan 2018). The value of intro-
ducing the parameter α is that we quantify the extent to

which outcomes are equalized in an intuitive way, via a
comparison with the observed difference between groups.
Under partially equalized outcomes, the predicted differ-
ence between groups is smaller than the observed difference
between groups. Non-equalized outcomes means that pre-
dicted outcomes are faithful to the observed difference in
outcomes between groups. If α > 1 the predicted difference
amplifies the observed difference, while if α < 0 the pre-
dicted difference flips the sign of the observed difference.
These options do not appear advantageous in terms of either
fairness or accuracy, and we do not focus on them.

2.3 Realistic Assumptions
We now introduce three realistic assumptions which we use
in some parts of our analysis (we flag when each assumption
is being used). The first assumption is that the observed rates
(e.g. of recidivism) are different across groups, which is true
for most cases of interest.

Assumption 1 (Different observed rates).

p(Y = 1|S = 1) 6= p(Y = 1|S = 0) (4)

The other two assumptions are that our decisions are im-
perfect (i.e. they are not always accurate) and non-vacuous
(i.e. they have some predictive power). This covers the bulk
of realistic situations in which algorithmic decisions are
used. We observe that the imperfect decisions assumption
will hold if Y cannot be expressed as a deterministic func-
tion of X and S. In this case, changing Ŷ will not help. This
is typically the case when we are making predictions about
the future actions of individuals.

Assumption 2 (Imperfect decisions). At least one of the fol-
lowing holds:

p(Ŷ = 1|Y = 0) > 0 (5)

i.e. some negative examples are misclassified, or

p(Ŷ = 1|Y = 1) < 1 (6)

i.e. some positive examples are misclassified.

Assumption 3 (Non-vacuous decisions).

p(Ŷ = 1|Y = 1) > p(Ŷ = 1|Y = 0) (7)

i.e. the decision is more likely to be positive for positive
examples than for negative examples.

3 The Relationship Between Equalized Odds
and Equalized Outcomes

Assuming equalized odds is satisfied, we show there is a
quantifiable trade-off between accuracy and the extent to
which outcomes are equalized. As a corollary, we show that
equalized odds implies partially equalized outcomes. We
consider the cases where equalized odds either exactly or
approximately holds.3

3While the exact version is a special case of the approximate
version, we consider the exact case first as it makes the presentation
of the results more intuitive.



3.1 Perfectly Equalized Odds
We show in Theorem 1 that given perfectly equalized odds,
the extent to which we equalize outcomes is given by the
difference α between the true positive rate and false positive
rate. This novel result is of interest because it precisely quan-
tifies the relationship between the well-known but seemingly
distinct notions of equalized odds and equalized outcomes.
Theorem 1 (Equalized outcomes given equalized odds). Let

α := p(Ŷ = 1|Y = 1)− p(Ŷ = 1|Y = 0).

Suppose (1) and (2) hold, i.e. equalized odds is satisfied.
Then (3) is satisfied, i.e. α is the equalized outcomes coeffi-
cient satisfying

p(Ŷ = 1|S = 1)− p(Ŷ = 1|S = 0)

= α(p(Y = 1|S = 1)− p(Y = 1|S = 0)).

Proof. We have

p(Ŷ = 1|S = 1)

= p(Y = 1|S = 1)p(Ŷ = 1|S = 1, Y = 1)

+ p(Y = 0|S = 1)p(Ŷ = 1|S = 1, Y = 0) (8)
and

p(Ŷ = 1|S = 0)

= p(Y = 1|S = 0)p(Ŷ = 1|S = 0, Y = 1)

+ p(Y = 0|S = 0)p(Ŷ = 1|S = 0, Y = 0) (9)
by the law of total probability.
Applying (1) and (2) to (8) yields

p(Ŷ = 1|S = 1) = p(Y = 1|S = 1)p(Ŷ = 1|Y = 1)

+ p(Y = 0|S = 1)p(Ŷ = 1|Y = 0) (10)
and similarly, applying (1) and (2) to (9) yields

p(Ŷ = 1|S = 0) = p(Y = 1|S = 0)p(Ŷ = 1|Y = 1)

+ p(Y = 0|S = 0)p(Ŷ = 1|Y = 0). (11)
Subtracting (11) from (10) and using the definition of α,

we have

p(Ŷ = 1|S = 1)− p(Ŷ = 1|S = 0)

= α(p(Y = 1|S = 1)− p(Y = 1|S = 0)). (12)

As a consequence of Theorem 1 and our realistic assump-
tions, if we have perfectly equalized odds then we have par-
tially equalized outcomes, as shown in Corollary 1. While as
we mentioned above the incompatibility of equalized odds
and fully equalized outcomes (i.e. α = 0, statistical parity or
independence) was already known, we are the first to show
that equalized odds is also incompatible with non-equalized
outcomes (α = 1) or indeed any value of α outside the in-
terval (0, 1) under our realistic assumptions.

Corollary 1 (Equalized odds implies partially equalized out-
comes under realistic assumptions). Suppose (1) and (2)
hold, i.e. we have equalized odds. Suppose also that Assump-
tions 1, 2 and 3 hold. Then satisfying (3) requires α ∈ (0, 1),
i.e. we have partially equalized outcomes.

Proof. By Theorem 1 we know that given equalized odds,
(3) is satisfied for α = p(Ŷ = 1|Y = 1)−p(Ŷ = 1|Y = 0).
Applying Assumption 1 (different observed rates), this is the
only value of α satisfying (3). Applying Assumption 2 (im-
perfect decisions) we have α < 1. Applying Assumption
3 (non-vacuous decisions) we have α > 0. The result fol-
lows.

3.2 Approximately Equalized Odds
We consider a relaxation of the equalized odds condition, al-
lowing the false positive rates to slightly differ across groups
and the false negative rates to likewise slightly differ across
groups. The parameter δ quantifies the degree of this relax-
ation, with δ = 0 corresponding to perfectly equalized odds.
Definition 3 (Approximately equalized odds). For some
constant δ ≥ 0 we have

p(Ŷ = 1|S = 1, Y = 1), p(Ŷ = 1|S = 0, Y = 1) ∈
[(1− δ)p(Ŷ = 1|Y = 1), (1 + δ)p(Ŷ = 1|Y = 1)] (13)

i.e. the true positive rate is approximately the same for
both groups.

We also have

p(Ŷ = 1|S = 1, Y = 0), p(Ŷ = 1|S = 0, Y = 0) ∈
[(1− δ)p(Ŷ = 1|Y = 0), (1 + δ)p(Ŷ = 1|Y = 0)] (14)

i.e. the false positive rate is approximately the same for
both groups.

In Theorem 2 we show that if δ-approximately equalized
odds is satisfied, then the extent to which we equalize out-
comes is given by an interval. This midpoint of the interval
is determined by the difference α between the true positive
rate and false positive rate. The size of the interval is deter-
mined by δ and a distribution-dependent parameter β.
Theorem 2 (Equalized outcomes given approximately
equalized odds). Let

α := p(Ŷ = 1|Y = 1)− p(Ŷ = 1|Y = 0),

ε := p(Y = 1|S = 1) + p(Y = 1|S = 0)

and

β := εp(Ŷ = 1|Y = 1) + (2− ε)p(Ŷ = 1|Y = 0).

Observe that β ≥ 0. Suppose (13) and (14) hold, i.e. δ-
approximately equalized odds is satisfied. Then

p(Ŷ = 1|S = 1)− p(Ŷ = 1|S = 0) ∈
[α(p(Y = 1|S = 1)− p(Y = 1|S = 0))− δβ,
α(p(Y = 1|S = 1)− p(Y = 1|S = 0)) + δβ].
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Figure 1: Visualization of our key results. Certain combinations of equalized outcomes, equalized odds and accuracy are possi-
ble (light green regions), while other combinations are impossible (dark gray regions). In (a) we vary equalized odds approxi-
mation parameter δ, fixing accuracy parameter α := p(Ŷ = 1|Y = 1)− p(Ŷ = 1|Y = 0). In (b) we vary the p(Ŷ = 1|Y = 1)

term in α and in (c) we vary the p(Ŷ = 1|Y = 0) term in α, fixing δ. β is a distribution-dependent parameter (see Theorem 2).

Proof idea. As in Theorem 1, use the law of total probabil-
ity to express p(Ŷ = 1|S = 1) and p(Ŷ = 1|S = 0).
Then apply the δ-approximately equalized odds assumption
to upper and lower bound their difference. See Appendix A
for complete proof.

3.3 Interpretation
We visualize our results in Figure 1. In each plot the y-axis
shows the predicted difference between groups, i.e. the ex-
tent to which outcomes are equalized, on a scale from zero
(bottom) to the observed difference between groups (top).
We vary other parameters along the x-axes of the plots.

If perfectly equalized odds is satisfied there is an exact
relationship between equalized outcomes and α (see The-
orem 1, green line on plots). If δ-approximate equalized
odds is satisfied there is a region of permissible combina-
tions of equalized outcomes and α values (see Theorem 2,
light green region on plots). Combinations outside this re-
gion violate δ-approximate equalized odds (dark gray region
on plots).

In Figure 1(a), we see that if we relax the constraint on
equalized odds by increasing the parameter δ (see Definition
3), we have a larger region of possible combinations.4 The
size of this region is quantified by the slack term δβ. The

4The value of δ for which the edge of this region intersects the
x-axis is given by δ∗ := α

β
(p(Y = 1|S = 1)− p(Y = 1|S = 0)).

Figure 1(a) uses the fixed parameters α := 0.5, β := 1 and ε := 1.

region is an interval centred on the product of α and the
observed difference between groups. We see visually why
for α ∈ (0, 1), i.e. for decisions that are imperfect and non-
vacuous, we have partially equalized outcomes.

Figures 1(b) and 1(c) show that if we have equalized odds,
then increasing accuracy (measured by α) moves towards
non-equalized outcomes.5 We may increase α by increasing
the true positive rate, as in Figure 1(b), where we assume no
false positives. We may also increase α by decreasing the
false positive rate, as in Figure 1(c), where we assume no
false negatives. Under perfectly equalized odds the effect on
equalized outcomes is the same, while under approximately
equalized odds the permissible regions differ because β de-
pends on the false positive rate and the true positive rate.

4 Generalization of Calibration-Equalized
Odds Impossibility Result

The relationship between equalized odds and equalized out-
comes, in addition to its intrinsic interest, allows us to gen-
eralize a well-known result about the impossibility of simul-
taneously satisfying calibration and equalized odds (Theo-
rem 1.1 of Kleinberg, Mullainathan, and Raghavan 2017).
We use a proof technique involving elementary probabilities,
which also provides a simpler proof of the previous result.

5Figures 1(b) and 1(c) use the fixed parameters ε := 1 and
δ := 0.2(p(Y = 1|S = 1)− p(Y = 1|S = 0)).



4.1 Review of Existing Result
We first introduce the definition of group-conditional
calibration proposed in previous work (Kleinberg, Mul-
lainathan, and Raghavan 2017; Pleiss et al. 2017). This
means that for both groups, each risk score equals the ob-
served risk associated with individuals assigned that score.

Definition 4 (Group-conditional calibration (Kleinberg,
Mullainathan, and Raghavan 2017; Pleiss et al. 2017)). Both
of the following statements hold ∀c ∈ [0, 1]:

p(Y = 1|h(x, s) = c, S = 1) = c (15)

p(Y = 1|h(x, s) = c, S = 0) = c (16)

We now state the well-known calibration-equalized odds
impossibility result (Theorem 1.1 of Kleinberg, Mul-
lainathan, and Raghavan 2017, restated to align with our def-
initions).

Theorem 3 (Calibration-equalized odds impossibility result
(Kleinberg, Mullainathan, and Raghavan 2017)). Suppose
(1), (2), (15) and (16) hold, i.e. equalized odds and group-
conditional calibration are both satisfied. Then at least one
of Assumption 1 or Assumption 2 is violated, i.e. the ob-
served rates are the same for both groups and/or the de-
cision is perfect.

In other words, equalized odds implies not calibration un-
der realistic assumptions, as stated in Table 1.

4.2 Group-Conditional Calibration Implies
Non-Equalized Outcomes

In preparation for generalizing Theorem 3, we show in
Lemma 1 that group-conditional calibration implies non-
equalized outcomes but not vice versa. Using the contrapos-
itive of the fact that group-conditional calibration implies
non-equalized outcomes, partially equalized outcomes im-
plies not calibration as stated in Table 1. We observe that
in contrast to group-conditional calibration, test-fairness as
proposed in Chouldechova 2017 does not in general imply
non-equalized outcomes.

Lemma 1 (Group-conditional calibration implies non-
equalized outcomes but not vice versa). If (15) and (16)
hold, then (3) holds for α = 1, i.e. group-conditional cali-
bration implies non-equalized outcomes.

However, if (3) holds for α = 1, then it is not the case
that (15) and (16) must hold, i.e. non-equalized outcomes
does not imply group-conditional calibration.

Proof idea. Use laws of probability to show that group-
conditional calibration implies non-equalized outcomes.
Then construct a single example to show that non-equalized
outcomes does not imply group-conditional calibration. See
Appendix A for complete proof.

4.3 The Generalized Result
The existing result stated in Theorem 3 shows that if group-
conditional calibration and equalized odds hold, realistic as-
sumptions are violated. Our new result in Theorem 4 shows
that if non-equalized outcomes and equalized odds hold, the

same realistic assumptions are violated. As we just showed
in Lemma 1, group-conditional calibration implies non-
equalized outcomes but not vice versa, i.e. non-equalized
outcomes is a weaker condition than group-conditional cali-
bration. Therefore Theorem 4 is more general than Theorem
3, since with a weaker condition we arrive at the same con-
clusion. It is straightforward to see that Lemma 1 and Theo-
rem 4 together imply Theorem 3. We observe that our proof
technique appears simpler, since it relies only on elementary
manipulation of probabilities.
Theorem 4 (Generalization of calibration-equalized odds
impossibility result). Suppose (1) and (2) hold, and (3)
holds for α = 1, i.e. equalized odds and non-equalized out-
comes are both satisfied. Then at least one of Assumption 1
or Assumption 2 is violated, i.e. the observed rates are the
same for both groups and/or the decision is perfect.

Proof. Suppose (3) holds for α = 1, i.e. non-equalized out-
comes is satisfied.

Suppose (1) and (2) hold, i.e. equalized odds is satisfied.
Applying Theorem 1,

p(Ŷ = 1|S = 1)− p(Ŷ = 1|S = 0)

= (p(Ŷ = 1|Y = 1)− p(Ŷ = 1|Y = 0))

×(p(Y = 1|S = 1)− p(Y = 1|S = 0)).

(17)

Combining (3) and (17), we have

p(Y = 1|S = 1)− p(Y = 1|S = 0)

= (p(Ŷ = 1|Y = 1)− p(Ŷ = 1|Y = 0))

×(p(Y = 1|S = 1)− p(Y = 1|S = 0)).

(18)

We conclude from (18) that at least one of the following
holds:

p(Y = 1|S = 1) = p(Y = 1|S = 0) (19)

p(Ŷ = 1|Y = 1)− p(Ŷ = 1|Y = 0) = 1 (20)
If (19) holds then Assumption 1 is violated, i.e. the ob-
served rates are the same for both groups. If (20) holds, then
p(Ŷ = 1|Y = 1) = 1 and p(Ŷ = 1|Y = 0) = 0. Therefore
Assumption 2 is violated, i.e. the decision is perfect.

5 Conclusion
When algorithms make predictions of the future actions of
individuals, a certain degree of inaccuracy seems inevitable.
In this context, naively using trends observed across groups
to make predictions about individuals – a problem known as
group-to-individual inference (Fisher, Medaglia, and Jeron-
imus 2018) – creates the risk of unfairness, in the legal
system and beyond. We have formalized the intuition that
when algorithms conduct group-to-individual inference – or
in other words, stereotype – they tend to be unfair to individ-
uals who are ‘atypical’ (e.g. non-reoffenders from a group
with higher reoffence rates). In particular, we have seen that
an imperfect algorithm for which the predicted and observed
differences between groups are equal will violate equalized
odds. Avoiding this requires partially equalized outcomes,
which can be seen as an instantiation of ‘algorithmic affir-
mative action’ (Chander 2016).
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A Supplementary Proofs
We present the proofs of Theorem 2 and Lemma 1.

A.1 Proof of Theorem 2 (Equalized Outcomes
Given Approximately Equalized Odds)

Proof. We have

p(Ŷ = 1|S = 1) =

p(Y = 1|S = 1)p(Ŷ = 1|S = 1, Y = 1)+

p(Y = 0|S = 1)p(Ŷ = 1|S = 1, Y = 0)

and

p(Ŷ = 1|S = 0) =

p(Y = 1|S = 0)p(Ŷ = 1|S = 0, Y = 1)+

p(Y = 0|S = 0)p(Ŷ = 1|S = 0, Y = 0)

by the law of total probability.
Assuming δ-approximately equalized odds, we have

p(Ŷ = 1|S = 1)− p(Ŷ = 1|S = 0)

≤ p(Y = 1|S = 1)(1 + δ)p(Ŷ = 1|Y = 1)

+ p(Y = 0|S = 1)(1 + δ)p(Ŷ = 1|Y = 0)

− p(Y = 1|S = 0)(1− δ)p(Ŷ = 1|Y = 1)

− p(Y = 0|S = 0)(1− δ)p(Ŷ = 1|Y = 0)

= α(p(Y = 1|S = 1)− p(Y = 1|S = 0)) + δβ.

The equality follows by rearranging the terms and using
the definitions of α and β.

Similarly,

p(Ŷ = 1|S = 1)− p(Ŷ = 1|S = 0)

≥ p(Y = 1|S = 1)(1− δ)p(Ŷ = 1|Y = 1)

+ p(Y = 0|S = 1)(1− δ)p(Ŷ = 1|Y = 0)

− p(Y = 1|S = 0)(1 + δ)p(Ŷ = 1|Y = 1)

− p(Y = 0|S = 0)(1 + δ)p(Ŷ = 1|Y = 0)

= α(p(Y = 1|S = 1)− p(Y = 1|S = 0))− δβ.

A.2 Proof of Lemma 1 (Group-Conditional
Calibration Implies Non-Equalized
Outcomes but Not Vice Versa)

Proof. Suppose (15) and (16) hold, i.e. group-conditional
calibration is satisfied. Then

p(Y = 1|S = 1)− p(Y = 1|S = 0)

=

∫ 1

0

p(h(x, s) = c|S = 1)p(Y = 1|h(x, s) = c, S = 1) dc

−
∫ 1

0

p(h(x, s) = c|S = 0)p(Y = 1|h(x, s) = c, S = 0) dc

by the law of total probability

=

∫ 1

0

p(h(x, s) = c|S = 1)c dc

−
∫ 1

0

p(h(x, s) = c|S = 0)c dc

by group-conditional calibration, substituting in (15) and
(16)

=

∫ 1

0

p(h(x, s) = c|S = 1)p(Ŷ = 1|h(x, s) = c, S = 1) dc

−
∫ 1

0

p(h(x, s) = c|S = 0)p(Ŷ = 1|h(x, s) = c, S = 0) dc

by the definition p(Ŷ = 1|X = x, S = s) := h(x, s)

= p(Ŷ = 1|S = 1)− p(Ŷ = 1|S = 0)

by the law of total probability. Hence (3) holds for α = 1
and we have shown that group-conditional calibration im-
plies non-equalized outcomes.

However, we may have non-equalized outcomes without
group-conditional calibration. For example, suppose

h(x, s) := p(Y = 1|S = s) + η

where η is generated by random noise with range
[−p(Y = 1|S = s), 1− p(Y = 1|S = s)] and mean zero.

Therefore

p(Ŷ = 1|S = 1) = p(Y = 1|S = 1)

and

p(Ŷ = 1|S = 0) = p(Y = 1|S = 0).

Hence (3) holds for α = 1, i.e. we have non-equalized
outcomes.

We also have ∀c ∈ [0, 1]

p(Y = 1|h(x, s) = c, S = 1) = p(Y = 1|S = 1)

and

p(Y = 1|h(x, s) = c, S = 0) = p(Y = 1|S = 0).

Hence (15) and (16) do not in general hold and we have
shown that non-equalized outcomes does not imply group-
conditional calibration.

B Motivating Examples of Equalized Odds
and its Relationship to Equalized

Outcomes
We present a motivating example for equalized odds us-
ing recidivism prediction. We also present an example
which motivates the relationship between equalized odds
and equalized outcomes.



Table 2: Test set results for a recidivism prediction model on the ProPublica dataset. The example motivates equalized odds.
Metric African-American Non African-American Overall
Observed reoffence rate 54.1% 39.9% 47.2%
Predicted reoffence rate 55.2% 40.7% 48.1%
Predicted reoffence rate among non-reoffenders 47.8% 36.2% 41.4%
Predicted reoffence rate among reoffenders 61.5% 47.4% 55.7%
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Figure 2: Motivating example: equalized odds appears related to equalized outcomes. The x-axis shows the parameter λ used
in pre-processing (see text) on a log scale, while the y-axis shows several performance measures of interest.

B.1 Equalized Odds
We explore the definition of and rationale behind equal-
ized odds, using recidivism prediction with the ProPublica
dataset, which contains information about 7214 criminal of-
fences committed in Broward County, Florida. We used the
individual’s age, gender, race and criminal history to pre-
dict whether they would reoffend within two years.6 We ap-
plied a 70/30 training/test split of the data, trained a logistic
regression model7 on the training set, and used this model
to predict the probability that each individual in the test set
would reoffend.

The model achieved an area under the curve (AUC) of
0.72 on the test set, indicating that the model is far from per-
fect but a lot better than a random guess.8 The results are

6The dataset is available at https://github.com/
propublica/compas-analysis/blob/master/
compas-scores.csv. We predicted the column
is recid using sex, age cat, juv fel count,
juv misd count, juv other count priors count
and c charge degree, representing categorical variables as a
one-hot encoding.

7Implemented in Python using the sklearn package.
8AUC can be interpreted as the probability that a randomly se-

lected positive example will receive a higher score than a randomly
selected negative example. A perfect classifier achieves an AUC of

shown in Table 2. We note there is a difference in the ob-
served reoffence rates between African-American and non
African-American individuals in the data. The predicted re-
offence rates are close to the observed reoffence rates for
both groups, and thus show a difference of a similar mag-
nitude. The model rates African-American individuals as
higher risk on average, but one could justify this by argu-
ing that the model simply reflects trends in the data.

However, looking separately at those individuals who
were observed as non-reoffenders, and those who were ob-
served as reoffenders, tells a different story. Looking at the
non-reoffenders, for African-Americans the predicted reof-
fence rate is 47.8% while for non African-Americans it is
36.2%. In other words, the false positive rate is much higher
for African-Americans than for non African-Americans.
Now looking only at the reoffenders, we notice a difference
in the true positive rate across racial groups – for African-
Americans the predicted reoffence rate is 61.5% while for
non African-Americans it is 47.4%. Equivalently, the false
negative rate for non African-Americans (52.6%) is much
higher than for African-Americans (38.5%).

Among non-reoffenders, non African-Americans are bet-
ter off since they are less likely to be incorrectly classified as
high risk. Among reoffenders, non African-Americans are

1, while a random classifier achieves an AUC of 0.5.



also better off since they are more likely to be incorrectly
classified as low risk. These two types of discrimination are
precisely what ProPublica reported about the COMPAS al-
gorithm (Angwin et al. 2016). Our example shows how eas-
ily this can occur, even if on the face of it the model seems
to just reflect differences between two groups in its train-
ing data. It also shows how individuals are impacted by in-
ferences made from past observations of others who appear
similar to them – in effect they are stereotyped by the algo-
rithm.

In summary, our example shows how a model’s true pos-
itive rates and false positive rates may differ across groups,
which may disadvantage a particular group. This observa-
tion motivates the definition of equalized odds – the true
positive rates and false positive rates are equal across groups
– which, if satisfied, prevents this form of disadvantage
(Hardt, Price, and Srebro 2016).

B.2 The Relationship between Equalized Odds
and Equalized Outcomes

Continuing with our ProPublica dataset example, we ask
whether our findings – that our observed and predicted re-
offence rates were close for both groups, and that we vio-
lated equalized odds – are quirks of this particular algorithm
or dataset? As our theoretical results have shown, this is far
from a coincidence – in fact, under realistic assumptions this
combination is inevitable!

The core contribution of our work is to formalize the re-
lationship between equalized odds and equalized outcomes.
To provide intuition on this relationship, we pre-processed
the ProPublica data to suppress information about race us-
ing a technique proposed in Edwards and Storkey 2016. The
technique is governed by a parameter λ – increasing this pa-
rameter changes the data to make it harder to distinguish
between the records of African-Americans and non African-
Americans.9 We then ran logistic regression (as in Section
B.1) on the pre-processed data and reported results on the
test set, as shown in Figure 2.

This technique yielded more equalized outcomes with in-
creasing λ, i.e. the predicted reoffence rates for African-
Americans and non African-Americans became closer (top
left). The accuracy of the model as measured by AUC de-
clined somewhat with increasing λ (top right). The predicted
reoffence rates for non-reoffenders became closer for the
two groups with increasing λ (bottom left). The predicted
reoffence rates for reoffenders for the two groups also be-
came closer (bottom right). In other words, we achieved a
tighter approximation of equalized odds with increasing λ.
Are these trends in equalized outcomes, accuracy and equal-
ized odds a coincidence? Can we have equalized odds with-

9More specifically, we learn a map which is applied to each data
point to transform it. In learning this map, we optimize an objec-
tive function which jointly depends on how well the transformed
data approximates the original data, and how well an adversary can
estimate a particular attribute (in this case race) from it. The latter
is more important for larger λ. We observe that simply omitting
the attribute is not sufficient, since it may be possible to infer the
attribute from other columns.

out equalizing outcomes? What about equalized odds with
fully equalized outcomes?

In summary, our example shows anecdotal evidence of
a relationship between equalized odds and equalized out-
comes, and raises questions about whether this relationship
has a mathematical foundation. The technical results in this
paper address these questions.


