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Abstract
Machine learning algorithms are increasingly used to make or
support important decisions about people’s lives. This has led
to interest in the problem of fair classification, which involves
learning to make decisions that are non-discriminatory with
respect to a sensitive variable such as race or gender. Several
methods have been proposed to solve this problem, including
fair representation learning, which cleans the input data used
by the algorithm to remove information about the sensitive
variable. We show that using fair representation learning as
an intermediate step in fair classification incurs a cost com-
pared to directly solving the problem, which we refer to as the
cost of mistrust. We show that fair representation learning in
fact addresses a different problem, which is of interest when
the data user is not trusted to access the sensitive variable. We
quantify the benefits of fair representation learning, by show-
ing that any subsequent use of the cleaned data will not be
too unfair. The benefits we identify result from restricting the
decisions of adversarial data users, while the costs are due to
applying those same restrictions to other data users.

1 Introduction
Machine learning algorithms are used to make or sup-
port decisions in a wide variety of contexts including fi-
nancial and judicial risk assessments, applicant screening
for employment, and online ad selection. Concerns about
the fairness of these algorithms have arisen as a result
(O’Neil 2017; Barocas and Selbst 2016; Angwin et al. 2016;
Datta, Tschantz, and Datta 2015). Decisions made by ma-
chine learning algorithms typically cannot be controlled
or interpreted as straightforwardly as those made by rule-
based systems. Furthermore, artefacts of previous discrim-
ination in an algorithm’s training data may affect its de-
cisions. Researchers have responded by developing tech-
niques to incorporate fairness into the design of machine
learning algorithms (Barocas, Hardt, and Narayanan 2018;
Zliobaite 2015; Romei and Ruggieri 2014). While these
techniques often focus on achieving group fairness – i.e. not
discriminating against particular groups – another important
consideration is individual fairness – i.e. giving similar treat-
ment to individuals who are similar (Dwork et al. 2012).

The problem of fair classification involves making a deci-
sion (e.g. whether to grant a loan) based on an input (e.g. in-
dividual financial and demographic information) which ac-
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curately predicts a target of interest (e.g. loan default), while
at the same time avoiding discrimination on the basis of an
individual’s group membership (e.g. race, gender) encoded
in a sensitive variable. The data user is trusted to access the
sensitive variable in training and is responsible for making
decisions that appropriately consider accuracy and fairness.

In contrast (see Figure 1), the problem of fair represen-
tation learning involves producing a cleaned version of the
input which remains useful for predicting the target, but sup-
presses information which could be used to discriminate
based on the sensitive variable. We now assume the data
user is not trusted to access the sensitive variable in training,
which may be appropriate if the data user could be either
adversarial, i.e. interested in being unfair, or indifferent, i.e.
interested only in target accuracy (Madras et al. 2018). This
problem setting involves three parties: a data producer who
cleans the input data, a data user who makes decisions from
the data, and a data regulator who oversees fair use of the
data. For example, when deciding whether to give an indi-
vidual a loan, the data producer might be a credit bureau, the
data user a bank and the data regulator a government author-
ity. Even within an organization, this separation of concerns
has the advantage of providing checks and balances.

1.1 Contributions of This Paper
This paper offers contributions that are have both scientific
and policy significance, and are technically novel.

Scientific significance: A plethora of methods use fair rep-
resentation learning (Zemel et al. 2013; Feldman et al. 2015;
Edwards and Storkey 2016; Louizos et al. 2016; Johndrow
and Lum 2017; Beutel et al. 2017; Madras et al. 2018) as
a technique for fair classification. Recent work (Menon and
Williamson 2018) has solved in analytical form a canonical
version of the fair classification problem. Is fair representa-
tion learning then to be relegated to a sub-optimal technique
for a problem better solved through other means? Devel-
oping more fair representation learning techniques does not
address this question. Instead, we show that fair representa-
tion learning in fact solves a different problem – i.e. how to
guarantee that decisions made by an untrusted data user can
be accurate but will not be unfair – and quantify the costs
and benefits of such representations in terms of fairness and
utility. This represents a progression in our scientific under-
standing, given that this problem had never previously been
formally posed or analysed.
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Figure 1: Summary of (a) fair classification and (b) fair representation learning, showing train time data processing for both,
and costs and benefits of (b).

Policy significance: Our approach makes possible a gov-
ernance model involving a separation of concerns between a
data producer, data user and data regulator (previous work
assumes a single trusted data user). The model enables a
regulator to guarantee fairness even if the data user is ad-
versarial. This is an advance in the regulation of algorithmic
fairness, given that no alternatives currently exist in the re-
alistic setting where a data user is not trusted to be fair.

Novel technical results: We formalize the problem of
fair representation learning as distinct from fair classifica-
tion (Section 3). By stating the data producer’s optimization
problem in (5) and showing that a proxy problem can be
solved without access to the target variable (Theorem 1), we
derive a principled way to select a fair representation learn-
ing objective function (this is heuristic in prior work).

We present a novel quantification of the costs of using a
given representation (Section 4), a topic which had not pre-
viously been investigated. We identify costs both in terms of
the accuracy-fairness trade-off (i.e. the cost of mistrust given
in closed form in Theorem 2 and bounded without requiring
access to the target variable in Theorem 3), and in terms of
individual fairness (Theorem 4).

We present novel guarantees of the benefits of a given
representation (Section 5). We do this for two common mea-
sures of fairness: statistical parity (Theorem 5) and disparate
impact (Theorem 6), by computing the unfairness of an opti-
mal adversary. Conditioning on the target variable, our anal-
ysis can be used to guarantee quantified versions of equality
of opportunity and equalized odds as well.

We provide a proof idea in the main paper for each result.
The Appendices contain complete proofs, along with a sum-
mary of the problems, costs and benefits we consider, and
examples and experiments.

2 Background
We provide a brief summary of relevant work on parity-
based definitions of fairness, fair classification, and fair rep-
resentation learning.

Parity measures of quantitative fairness compare an al-
gorithm’s average decisions for different groups, for ex-
ample taking their difference – known as statistical par-
ity (Calders and Verwer 2010; Dwork et al. 2012) – or ra-
tio – known as disparate impact (United States Equal Op-
portunity Employment Commission 1978; Feldman et al.
2015). We may wish to compute a parity measure only
on a population subset. Constructing subsets using values
of the target variable yields variants such as equality of
opportunity and equalized odds (Hardt, Price, and Srebro
2016) – i.e. avoiding disparate mistreatment (Zafar et al.
2017a). However, when the training data labels are them-
selves affected by discrimination, conditioning on the tar-
get variable may not be suitable (Zafar et al. 2017a). If
the population subset consists of individuals who are sim-
ilar according to some metric, we have individual fairness
– i.e. avoiding disparate treatment (Dwork et al. 2012;
Mitchell and Shadlen 2018).

Methods for fair classification can be divided into pre-
processing – i.e. fair representation learning – which mod-
ifies the data that the algorithm learns from (Zemel et
al. 2013); in-processing, which modifies the algorithm’s
objective function to incorporate a fairness constraint or
penalty (Menon and Williamson 2018; Donini et al. 2018;
Zafar et al. 2017b; 2017a; Dwork et al. 2018; Bechavod and
Ligett 2017); and post-processing, which modifies the pre-
dictions produced by the algorithm (Hardt, Price, and Srebro
2016). We show that fair representation learning in fact ad-
dresses a distinct problem, which is of interest when the data



user is not trusted to access the sensitive variable.
A common approach to fair representation learning is to

clean the data such that conditioning on different sensitive
variable values yields similar distributions (Louizos et al.
2016; Feldman et al. 2015; Johndrow and Lum 2017). Ad-
versarial approaches (Edwards and Storkey 2016; Beutel et
al. 2017; Madras et al. 2018) use a neural network to learn a
representation function such that an adversary network can-
not accurately predict the sensitive variable from the cleaned
data. A problem variant, where the target is also modified
and the input is discrete, has been formulated as a convex op-
timization (Calmon et al. 2017). What existing approaches
typically do not offer (Theorem 4.1 from Feldman et al. 2015
is an exception) is a guarantee that all uses of the cleaned
data will be fair, or a quantification of the costs of the clean-
ing process. We seek to provide a stronger theoretical foun-
dation for fair representation learning. This objective is sim-
ilar in spirit to that of privacy aware learning, which is con-
cerned with the mathematical trade-off between the privacy
and utility of data (Wainwright, Jordan, and Duchi 2012).

3 Fair Classification vs Fair Representation
Learning

We introduce and compare the problems of fair classification
and fair representation learning. This formal comparison is
itself novel and is necessary for our subsequent analysis of
the costs and benefits of fair representation learning.

3.1 Fair Classification
In fair classification (Figure 1(a)), the data user trains on
samples of input variable X , target variable Y and sensitive
variable S. The samples are drawn from a distribution over
X ×Y×S, where X is the set of possible inputs, Y is the set
of possible labels and S is the set of possible sensitive vari-
able values. We focus on the setting where Y ∈ {0, 1}, cor-
responding to binary classification, and S ∈ {0, 1}, corre-
sponding to some common sensitive variable examples such
as gender or race. Let πY := p(Y = 1) and πS := p(S = 1)
be prior probabilities, and ηY (x) := p(Y = 1|X = x) and
ηS(x) := p(S = 1|X = x) be conditional probabilities, for
the positive classes of Y and S.

The data user learns stochastic hypothesis h : X → [0, 1]

which is used to construct decision variable Ŷ ∈ {0, 1},
where h(x) := p(Ŷ = 1|X = x). At test time, the data user
makes a decision using a sample of X , which may contain
information about S. The quality of a hypothesis h in pre-
dicting Y can be measured by a risk RY : [0, 1]X → [0, 1],
where we prefer hypotheses with a small value of RY (h). A
common choice is the cost-sensitive risk.
Definition 1 (Cost-sensitive risk (Elkan 2001; Zhao et al.
2013; Menon and Williamson 2018)). The cost-sensitive
risk of hypothesis h with respect to Y is

RY (h) := πY (1− cY )p(Ŷ = 0|Y = 1)

+ (1− πY )cY p(Ŷ = 1|Y = 0)

where cY ∈ [0, 1], p(Ŷ = 0|Y = 1) is known as the false
negative rate and p(Ŷ = 1|Y = 0) as the false positive rate.

We also wish to ensure that the hypothesis we learn is
fair. Two common fairness measures are statistical parity
and disparate impact, which compare outcomes for different
sensitive variable groups using their difference and ratio re-
spectively. In the analysis that follows we focus on the case
where statistical parity and disparate impact are computed
on the joint distribution over X × Y × S × {0, 1}. How-
ever, computing these measures only on part of the distribu-
tion yields other variants of interest, such as conditioning on
Y = 1 for quantified versions of equality of opportunity.
Definition 2 (Statistical parity (Calders and Verwer 2010;
Dwork et al. 2012)). The statistical parity of a hypothesis h
is

SP (h) := p(Ŷ = 1|S = 1)− p(Ŷ = 1|S = 0).

Definition 3 (Disparate impact (United States Equal Op-
portunity Employment Commission 1978; Feldman et al.
2015)). The disparate impact of a hypothesis h is

DI(h) :=
p(Ŷ = 1|S = 0)

p(Ŷ = 1|S = 1)
.

Notice that SP (h) ∈ [−1, 1], with equality of outcome
corresponding to 0, while DI(h) ∈ [0,∞), with equality of
outcome corresponding to 1. In both cases we want a value
that is neither too low nor too high. It has been shown that
this is equivalent to requiring that h and the ‘anti-classifier’
1 − h both have values that are not too low (Appendix C of
Menon and Williamson 2018).

The fair classification problem then naturally takes the
form, for some Rfair ∈ {SP,DI}:

min
h∈H

RY (h) subject to min[Rfair(h), Rfair(1−h)] ≥ τ, (1)

where H := [0, 1]X and τ is a constant measuring the re-
quired level of fairness. For DI , τ ∈ [0,∞), while for SP ,
τ ∈ [−1, 0] since SP (1− h) = −SP (h).

It has been shown that a constraint on SP or DI of the
type in (1) is equivalent to a constraint on a cost sensitive
risk with respect to S (see Lemmas 1 and 2 of Menon and
Williamson 2018 for details). Using Definition 1, this cost
sensitive risk is written as:

RS(h) := πS(1− cS)p(Ŷ = 0|S = 1)

+ (1− πS)cSp(Ŷ = 1|S = 0), (2)

where cS ∈ [0, 1].
It is more convenient to work with an unconstrained vari-

ant of the fair classification problem:

min
h∈H

[RY (h)− λRS(h)], (3)

where λ is a constant (not necessarily non-negative) control-
ling the trade-off between accuracy with respect to Y and
fairness with respect to S. It has been shown (Menon and
Williamson 2018) that for some choice of λ, some solution
to (3) is also a solution to (1).



Definition 4 (Optimal fair classification). Let the combined
risk RY S(h) := RY (h) − λRS(h). Let RY S(h∗) be the
value of (3) and h∗ be a corresponding hypothesis.

Subsequently we will compare optimal fair classification
to the case where we instead use fair representation learning
as an intermediate step in fair classification.

3.2 Fair Representation Learning
In fair representation learning (Figure 1(b)), the data pro-
ducer trains on samples of X , S and Y (we also examine
the case where the data producer does not access Y ), and
learns the representation function f : X → Z , where Z
is the set of possible cleaned variable values. The data pro-
ducer samples X and applies f to each sample to produce
cleaned variable Xf := f(X). The data producer learns f
so that Xf is still useful for predicting Y but suppresses
information about S. Let ηfY (z) := p(Y = 1|Xf = z)

and ηfS(z) := p(S = 1|Xf = z) be conditional proba-
bilities of the positive classes of Y and S induced by f .
The data user trains on samples of Xf and Y and learns
a stochastic hypothesis g : Z → [0, 1], which is used to
construct modified decision variable Ŷ f ∈ {0, 1} where
g(z) := p(Ŷ f = 1|Xf = z). At test time, the data producer
samples X and passes it through f to produce a sample of
Xf , from which the data user makes a decision.

When the data user is not trusted, we are interested in
constraining how unfair an adversarial user can be with the
cleaned data. As in the fair classification case, this is equiv-
alent to a constraint on an adversary’s cost-sensitive risk
with respect to S. We are also interested in ensuring that
the cleaned data is still useful for predicting the target. We
are therefore interested in the following problem:

min
f∈F

RY (g
∗
Y ◦ f) subject to RS(g∗S ◦ f) ≥ τ, (4)

where τ is a constant measuring the required level of fair-
ness, ◦ is function composition, g∗Y ∈ argmin

g∈G
RY (g ◦ f)

is an optimal indifferent user of the cleaned data, g∗S ∈
argmin
g∈G

RS(g ◦ f) is an optimal adversary using the cleaned

data, G := [0, 1]Z and F := ZX .
It is more convenient to work with the following uncon-

strained problem variant:

min
f∈F

[RY (g
∗
Y ◦ f)− λRS(g∗S ◦ f)]. (5)

Using the form of the minimum cost-sensitive risk (Zhao
et al. 2013), we may express the terms in (5) as follows:

RY (g
∗
Y ◦ f)

= EXf [min((1− cY )ηfY (X
f ), cY (1− ηfY (X

f )))] (6)

RS(g
∗
S ◦ f)

= EXf [min((1− cS)ηfS(X
f ), cS(1− ηfS(X

f )))]. (7)

Adversarial neural networks have previously been used
to estimate g∗S and g∗Y (Edwards and Storkey 2016; Beutel

et al. 2017; Madras et al. 2018). We observe that (6) and
(7) simplify the fair representation learning cost function (5)
by removing the two inner minimizations. Of course, there
remains the task of estimating the underlying distribution
and computing the outer minimization.

We focus on the case where the data producer learns a
representation without using the target variable. This allows
a single fair representation to be learned that can be used for
multiple target tasks. It also covers the situation where the
data producer does not have access to the target variable. For
example, Y contains commercially confidential information
(e.g. defaults on a specific type of loan) known to the data
user (e.g. a bank) but not the data producer (e.g. a credit
bureau). Furthermore, we focus on the case Z = X is a
Euclidean space, which facilitates our analysis and covers
many practical applications. In this case, we define average
reconstruction error and show its use as a proxy for target
task performance.
Definition 5 (Average reconstruction error). Suppose Z =
X is a Euclidean space. Let EX‖X−f(X)‖2 be the average
reconstruction error of f with respect toX , where ‖·‖2 is the
Euclidean vector norm.

Assuming the data producer does not access the target
variable, we propose the following variant of the fair rep-
resentation learning problem:

min
f∈F

[EX‖X − f(X)‖2 − λRS(g∗S ◦ f)]. (8)

We relate (8) and (5) as follows. This result allows us to
select a principled objective function for the data producer.
Theorem 1 (Fair representation learning without accessing
target variable). Suppose Z = X and we have the Lipschitz
condition that for some non-negative constant lY

∀x, x′ ∈ X , |ηY (x)− ηY (x′)| ≤ lY ‖x− x′‖2.
Then any f ∈ F minimizing

EX‖X − f(X)‖2 − λRS(g∗S ◦ f)
also minimizes an upper bound on

RY (g
∗
Y ◦ f)− lY λRS(g∗S ◦ f).

Proof idea. We upper bound RY (g∗Y ◦ f)− lY λRS(g∗S ◦ f)
by re-expressing the risks using Lemma 9 from Menon and
Williamson 2018, and making use of the Lipschitz con-
dition. We then observe that the f minimizing this upper
bound also minimizes EX‖X−f(X)‖2−λRS(g∗S ◦f).

4 Costs of Fair Representation Learning
We now identify two costs of fair representation learning
relative to the case of a single trusted data user. These costs
are incurred by data users who optimally incorporate fair-
ness into their decisions, as well as individuals about whom
these users make decisions. The first cost is the difference
in the optimal fairness-accuracy trade-off available with the
cleaned data compared to the original data, known as the
cost of mistrust. This cost is of interest to the data user – as
well as potentially the data regulator. The second cost is for
individual fairness, which is primarily of interest to the data
regulator. We show that they can both be estimated by a data
producer without accessing the target variable.



4.1 Cost of Mistrust
Suppose that after cleaning the data with the representation
function f , we solve the following fair classification prob-
lem, which is equivalent to (3) but using the cleaned data.

min
g∈G

[RY (g ◦ f)− λRS(g ◦ f)] (9)

Definition 6 (Cost of mistrust). The cost of mistrust for a
representation function f isRY S(g∗ ◦f)−RY S(h∗), where
g∗ and h∗ are hypotheses minimizing (9) and (3) respec-
tively and the value of λ is the same in both equations.

The cost of mistrust is non-negative because f restricts
the hypothesis class. If λ = 0 in (9) and (3), f may incur
a cost for the target accuracy of the indifferent user, which
seems unsurprising. However, for general λ we see that f
may also incur a cost for fair classification. Without access
to S the data user has no way to estimate RS(g ◦ f) in (9).
However, even if they could somehow guess this quantity,
f may create a suboptimal trade-off between fairness and
accuracy compared to the trade-off available to a trusted data
user using the original input. See Appendix C for examples
where the cost of mistrust is either zero or positive.

We now show in Theorem 2 that we can express the cost
of mistrust in analytical form. We build on an existing result
(Proposition 4 of Menon and Williamson 2018) which yields
the expressions h∗(x) = 1(ηY (x) − cY ≥ λ(ηS(x) − cS))
and g∗(z) = 1(ηfY (z)− cY ≥ λ(η

f
S(z)− cS)).

Theorem 2 (Analytical form of cost of mistrust). The cost
of mistrust may be expressed as

RY S(g
∗ ◦ f)−RY S(h∗)

= EX [min(ηfY (f(X))− cY , λ(ηfS(f(X))− cS))
−min(ηY (X)− cY , λ(ηS(X)− cS))]. (10)

The cost of mistrust may be decomposed into accuracy and
fairness differences, where the accuracy difference is

RY (g
∗ ◦ f)−RY (h∗)

= EX [h∗(X)(ηY (X)−cY )−g∗(f(X))(ηfY (f(X))−cY )],
and the fairness difference is

RS(g
∗ ◦ f)−RS(h∗)

= EX [h∗(X)(ηS(X)−cS)−g∗(f(X))(ηfS(f(X))−cS)],
which are combined in the overall cost of mistrust

RY S(g
∗ ◦ f)−RY S(h∗)

= RY (g
∗ ◦ f)−RY (h∗)− λ(RS(g∗ ◦ f)−RS(h∗)).

Proof idea. We apply Lemma 9 of Menon and Williamson
2018 to express each of RY (g∗ ◦ f), RY (h∗), RS(g∗ ◦ f)
and RS(h∗). Combining these yields a compact expression
for RY S(g∗ ◦ f)−RY S(h∗).

The expression (10) for the cost of mistrust allows us to
measure the quality of the fairness-accuracy trade-off avail-
able using f compared to using the original data. The de-
composition reveals that the signs of the accuracy and fair-
ness differences may vary. However, since the cost of mis-
trust is non-negative, for a fixed value ofRS we incur a value

of RY that is at least as large using f as with the original
data.

For intuition about the expression (10) for the cost of mis-
trust in Theorem 2, consider some point z ∈ Z and its
preimage Xz := {x ∈ X |f(x) = z}. If for all x ∈ Xz , we
have the same value of 1(ηY (x) − cY ≥ λ(ηS(x) − cS)),
then the expectation conditioned on x ∈ Xz will be zero,
otherwise it will be positive. Hence the cost of mistrust will
be small when points mapped to the same value of z tend to
have the same value of 1(ηY (x)− cY ≥ λ(ηS(x)− cS)).

We are interested in situations where the data producer
can guarantee that the cost of mistrust is small without ac-
cessing Y . When Z = X and the conditional distributions
ηY (x) and ηS(x) are smooth, the cost of mistrust can be up-
per bounded in terms of average reconstruction error. This
result, shown in Theorem 3, allows the data producer to
bound the cost of mistrust using only X and Xf .
Theorem 3 (Upper bound on cost of mistrust with smooth
conditional distributions). Suppose Z = X is a Euclidean
space and we have the Lipschitz conditions that for some
non-negative constants lY and lS

∀x, x′ ∈ X , |ηY (x)− ηY (x′)| ≤ lY ‖x− x′‖2
and

∀x, x′ ∈ X , |ηS(x)− ηS(x′)| ≤ lS‖x− x′‖2.

Then

RY S(g
∗ ◦ f)−RY S(h∗) ≤ (lY + λlS)EX‖X − f(X)‖2.

Proof idea. We observe thatRY S(h∗ ◦f) is an upper bound
onRY S(g∗◦f). We use Lemma 9 of Menon and Williamson
2018 to re-express RY S . We then use the Lipschitz condi-
tions to upper bound RY S(h∗ ◦ f)−RY S(h∗).

4.2 Cost for Individual Fairness
We investigate the cost of using a given representation in
terms of individual fairness (Dwork et al. 2012). This notion
requires that similar decisions should be made for similar
individuals, i.e. decisions are smooth.
Definition 7 (Individual fairness (Dwork et al. 2012)).
Let D and d be subadditive functions. Hypothesis h is
D, d−individually fair if

∀x, x′ ∈ X , D(h(x), h(x′)) ≤ d(x, x′).

We also give a quantitative notion of individual unfairness
by measuring the probability that a pair of randomly selected
individuals will be treated unfairly according to Definition 7.
Definition 8 (Individual unfairness). Hypothesis h has
D, d−individual unfairness with respect to X defined as

IUD,d(h) := p(D(h(x), h(x′)) > d(x, x′)),

where x and x′ are independent random samples of X .
It is possible that a representation function maps points

that are nearby in the input space to points that are distant
from each other in the feature space. Therefore, smooth hy-
potheses may not be individually fair when applied to the
cleaned data. We wish to quantify this cost for individual



fairness by upper bounding the individual unfairness of an
arbitrary smooth hypothesis applied to the cleaned data. We
show that it is possible for a data user to provide this kind of
certification to a data regulator by inspecting Xf and X . To
do this we introduce the following definition.

Definition 9 (Large reconstruction error rate). SupposeZ =
X . Let ε be a non-negative constant. Let p(d(X, f(X)) > ε)
be the large reconstruction error rate of f .

In Theorem 4 we show that if the large reconstruction er-
ror rate is small, then any hypothesis that is smooth (i.e. in-
dividually fair when applied to the original data) will not be
too individually unfair when applied to the cleaned data. We
observe that there is a tension between guaranteeing group
fairness, which involves removing information to protect an
adversary from inferring the sensitive variable, and individ-
ual fairness, which requires preserving information from the
original data.

Theorem 4 (Upper bound on individual unfairness). Sup-
pose Z = X . Let dε(x, x′) := d(x, x′) + 2ε and let h be
any individually fair hypothesis. Then the D, dε−individual
unfairness of h ◦ f is upper bounded as follows:

IUD,dε(h ◦ f) ≤ 2p(d(X, f(X)) > ε).

Proof idea. Let δ := p(d(X, f(X)) > ε). For randomly
drawn x and x′, d(x, f(x)) ≤ ε and d(x′, f(x′)) ≤ ε with
probability at least 1−2δ by the union bound. If these state-
ments hold, we may use the triangle inequality to conclude
that D(h(f(x), h(f(x′)) ≤ d(x, x′) + 2ε.

5 Benefits of Fair Representation Learning
We quantify the benefits of some f by measuring the dis-
crimination achieved by an optimal adversary usingXf . We
show that a data producer can do this for both statistical par-
ity and disparate impact. We can compute these two quan-
tities directly for a given f , so that unlike in the optimiza-
tion problems we considered earlier there is no need to use
a cost-sensitive risk. The quantities we obtain can be given
to a data regulator to certify that any use of the cleaned data
will not be too unfair. If the data producer has access to the
target variable, these quantities can also be evaluated on sub-
sets of the data with the same value of the target, to measure
quantified versions of equality of opportunity (conditioning
on Y = 1) and equalized odds (conditioning separately on
Y = 1 and Y = 0) (Hardt, Price, and Srebro 2016).

5.1 Benefit for Statistical Parity
We certify that any decision using the cleaned data has sta-
tistical parity (Definition 2) that is neither too small nor
too large. In Theorem 5, we show that the maximum and
minimum statistical parity of an adversary using Xf can
be expressed in closed form. The maximum and minimum
will be closer if the induced conditional probability ηfS(z)
does not deviate too much on average from the prior πS . If
ηfS(z) = πS everywhere, we have statistical parity of zero,
i.e. exact equality of outcome.

Theorem 5 (Statistical parity of optimal adversary). An ad-
versarial user of Xf achieves maximum and minimum sta-
tistical parity

max
g∈G

SP (g ◦ f) = 1− EXf [min(
ηfS(X

f )

πS
,
1− ηfS(Xf )

1− πS
)]

min
g∈G

SP (g ◦ f) = −1+EXf [min(
ηfS(X

f )

πS
,
1− ηfS(Xf )

1− πS
)].

Proof idea. Observe that statistical parity is a linear trans-
formation of balanced error rate. Apply the minimum bal-
anced error rate from Equation 32 of Zhao et al. 2013.

5.2 Benefit for Disparate Impact
We certify that any decision using the cleaned data has dis-
parate impact (Definition 3) that is neither too small nor too
large. In Theorem 6, we show that the maximum and mini-
mum disparate impact of an adversary using Xf can be ex-
pressed in closed form. The maximum and minimum will
be closer if the induced conditional probability ηfS(z) never
deviates too much from the prior πS . If ηfS(z) = πS every-
where, we have disparate impact of one, i.e. exact equality
of outcome. Observe how disparate impact is more sensitive
than statistical parity, since it requires ηfS(z) to be close to
πS everywhere rather than only in expectation.
Theorem 6 (Disparate impact of optimal adversary). Let
ηfS := max

z∈Z
ηfS(z) and ηf

S
:= min

z∈Z
ηfS(z). An adversarial

user of Xf achieves maximum and minimum disparate im-
pact

max
g∈G

DI(g ◦ f) =
πS(1− ηfS)
ηfS(1− πS)

min
g∈G

DI(g ◦ f) =
πS(1− ηfS)
ηfS(1− πS)

.

Proof idea. Re-express DI(g ◦ f) using the law of total
probability, the fact that Ŷ f and S are conditionally inde-
pendent given Xf , and Bayes’ rule. Using this form we ob-
tain the maximum and minimum values of DI(g ◦ f) and
the corresponding choices of g.

6 Conclusion
We have quantified the costs – an inferior fairness-accuracy
trade-off and an increase in individual unfairness – incurred
by a given representation. We have also quantified the bene-
fits – reduced statistical parity and disparate impact achiev-
able by an adversary – of such a representation. The bene-
fits result from restricting the decisions of adversarial data
users, while the costs are due to applying those same restric-
tions to other data users. We showed how a data producer
can estimate these costs and benefits, even without access to
the target variable, to support a novel three-party governance
model entailing a separation of concerns between fairness
and accuracy. Future directions of interest include extending
our results to finite samples, stochastic representation func-
tions, multiple sensitive groups and variables, more general
representation spaces, and other fairness definitions.
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A Summary of Problems, Costs and Benefits Considered

We summarize the problems we consider in Table 1. In Tables 2 and 3, we summarize the costs and benefits respectively of a
given representation function f . In each table we distinguish between cases where access to the target variable Y is required,
and cases where it is not required. Observe that if access to the target variable is available, the benefits described in Table 3 can
be computed for specific subsets of the data based on the target variable (e.g. conditioning on Y = 1 or Y = 0). Definitions of
all terms can be found in the main text.

Table 1: Problems

Problem Reference Optimization Problem

Access to target variable required

Fair classification (3) min
h∈H

[RY (h)− λRS(h)]

Fair representation learning (5) min
f∈F

[RY (g
∗
Y ◦ f)− λRS(g∗S ◦ f)]

Access to target variable not required

Fair representation learning without
accessing target variable

(8) min
f∈F

[EX‖X − f(X)‖2 − λRS(g∗S ◦ f)]

Table 2: Costs of a representation function f

Cost Reference Analytical Form

Access to target variable required

Cost of mistrust Theorem 2 EX [min(ηfY (f(X))−cY , λ(ηfS(f(X)) − cS))
−min(ηY (X)− cY , λ(ηS(X)− cS))]

Access to target variable not required

Upper bound on cost of mistrust us-
ing average reconstruction error

Theorem 3 (lY + λlS)EX‖X − f(X)‖2

Upper bound on individual unfair-
ness using large reconstruction error
rate

Theorem 4 2p(d(X, f(X)) > ε)

Table 3: Benefits of a representation function f

Benefit Reference Analytical Form

Access to target variable not required

Maximum and minimum
statistical parity

Theorem 5 max
g∈G

SP (g ◦ f) = 1 − EXf [min(
ηfS(X

f )

πS
,
1−ηfS(X

f )

1−πS )]

min
g∈G

SP (g ◦ f) = −1 + EXf [min(
ηfS(X

f )

πS
,
1−ηfS(X

f )

1−πS )]

Maximum and minimum
disparate impact

Theorem 6 max
g∈G

DI(g ◦ f) = πS(1−ηf
S
)

ηfS(1−πS)

min
g∈G

DI(g ◦ f) = πS(1−ηfS)
ηfS(1−πS)



B Theorem Proofs
We present complete proofs of our theoretical results.

B.1 Proof of Theorem 1 (Fair Representation Learning Without Accessing Target Variable)
Proof. We derive an upper bound on

RY (g
∗
Y ◦ f)− lY λRS(g∗S ◦ f).

Let h∗Y ∈ argmin
h∈H

RY (h), which takes the form h∗Y (x) = 1(ηY (x) ≥ cY ) (Zhao et al. 2013).

RY (g
∗
Y ◦ f)− lY λRS(g∗S ◦ f)

≤ RY (h∗Y ◦ f)− lY λRS(g∗S ◦ f)
= RY (h

∗
Y ◦ f)−RY (h∗Y ) +RY (h

∗
Y )− lY λRS(g∗S ◦ f)

= EX [(cY − ηY (X))h∗Y (f(X))]− EX [(cY − ηY (X))h∗Y (X)] +RY (h
∗
Y )− lY λRS(g∗S ◦ f)

= EX [(cY − ηY (X))(h∗Y (f(X))− h∗Y (X))] +RY (h
∗
Y )− lY λRS(g∗S ◦ f)

≤ lY EX‖X − f(X)‖2 +RY (h
∗
Y )− lY λRS(g∗S ◦ f).

For the second equality we apply Lemma 9 from (Menon and Williamson 2018). For the third equality we apply linearity of
expectation.

For the final inequality, for any x where h∗Y (x) 6= h∗Y (f(x)), there must exist some x′ on the decision boundary such that
cY − ηY (x′) = 0 and ‖x− x′‖2 ≤ ‖x− f(x)‖2. Combining with the Lipchitz condition yields

cY − ηY (x) ≤ cY − ηY (x′) + lY ‖x− x′‖2 ≤ lY ‖x− f(x)‖2.
Since this is true for every x it is also true in expectation.

We then observe

argmin
f∈F

[lY EX‖X − f(X)‖2 +RY (h
∗
Y )− lY λRS(g∗S ◦ f)]

= argmin
f∈F

[EX‖X − f(X)‖2 − λRS(g∗S ◦ f)].

B.2 Proof of Theorem 2 (Analytical Form of Cost of Mistrust)
Proof. First we show the analytical expression for the cost of mistrust. Applying Proposition 4 of Menon and Williamson 2018,
we have that h∗(x) = 1(ηY (x)− cY ≥ λ(ηS(x)− cS)) and g∗(z) = 1(ηfY (z)− cY ≥ λ(η

f
S(z)− cS)) are solutions to (3) and

(9) respectively.

EX [min(ηY (X)− cY , λ(ηS(X)− cS))]
= EX [(1− h∗(X))(ηY (X)− cY )] + λEX [h∗(X)(ηS(X)− cS)]
= EX [ηY (X)− cY ]− EX [h∗(X)(ηY (X)− cY )] + λEX [h∗(X)(ηS(X)− cS)]
= πY − cY − EX [h∗(X)(ηY (X)− cY )] + λEX [h∗(X)(ηS(X)− cS)]
= πY − cY +RY (h

∗)− (1− cY )πY + λEX [h∗(X)(ηS(X)− cS)]
= πY − cY +RY (h

∗)− (1− cY )πY − λRS(h∗) + λ(1− cS)πS
= RY (h

∗)− λRS(h∗)− cY (1− πY ) + λ(1− cS)πS .
The second and third last lines both involve substitutions based on Lemma 9 from Menon and Williamson 2018.
Similarly,

EX [min(ηfY (f(X))− cY , λ(ηfS(f(X))− cS))]
= EXf [min(ηfY (X

f )− cY , λ(ηfS(X
f )− cS))]

= RY (g
∗ ◦ f)− λRS(g∗ ◦ f)− cY (1− πY ) + λ(1− cS)πS .

The result follows by substituting the former expression from the latter and applying linearity of expectation.
The decomposed form straightforwardly follows from applying Lemma 9 of Menon and Williamson 2018 to each of

RY (g
∗ ◦ f), RY (h∗), RS(g∗ ◦ f) and RS(h∗), then applying linearity of expectation to express RY (g∗ ◦ f) − RY (h∗) and

RS(g
∗ ◦ f)−RS(h∗).



B.3 Proof of Theorem 3 (Upper Bound on Cost of Mistrust with Smooth Conditional Distributions)
Proof. Let h∗(x) := 1(ηY (x) − cY ≥ λ(ηS(x) − cS)), which is a solution to (3) (Proposition 4 of Menon and Williamson
2018).

RY S(g
∗ ◦ f)−RY S(h∗)

≤ RY S(h∗ ◦ f)−RY S(h∗)
= RY (h

∗ ◦ f)−RY (h∗)− λ(RS(h∗ ◦ f)−RS(h∗))
= EX [(cY − ηY (X))(h∗(f(X))− h∗(X))]− λEX [(cS − ηS(X))(h∗(f(X))− h∗(X))]

= EX [(cY − ηY (X)− λ(cS − ηS(X)))(h∗(f(X))− h∗(X))]

≤ (lY + λlS)EX‖X − f(X)‖2.

The second equality is by Lemma 9 from Menon and Williamson 2018 and linearity of expectation. The third equality is by
linearity of expectation.

For the final inequality, for any x where h∗(x) 6= h∗(f(x)), there must exist some x′ on the decision boundary such that
cY − ηY (x′)− λ(cS − ηS(x′)) = 0 and ‖x− x′‖2 ≤ ‖x− f(x)‖2. Combining with the Lipchitz conditions yields

cY − ηY (x)− λ(cS − ηS(x))
≤ cY − ηY (x′) + lY ‖x− x′‖2 − λ(cS − ηS(x′)− lS‖x− x′‖2)
≤ (lY + λlS)‖x− f(x)‖2.

Since this is true for every x it is also true in expectation.

B.4 Proof of Theorem 4 (Upper Bound on Individual Unfairness)
Proof. Let δ := p(d(X, f(X)) > ε). Let h be a D, d−individually fair hypothesis (see Definition 7).

Consider points x and x′ drawn independently at random using the inputX .With probability 1−δ, d(x, f(x)) ≤ ε. Similarly,
with probability 1− δ, d(x′, f(x′)) ≤ ε. By the union bound, both statements hold with probability at least 1− 2δ. In that case,
the following statements also hold:

D(h(f(x), h(f(x′))

≤ D(h(f(x)), h(x)) +D(h(x), h(f(x′)))

≤ ε+D(h(x), h(f(x′)))

≤ ε+D(h(x), h(x′)) +D(h(x′), h(f(x′)))

≤ 2ε+D(h(x), h(x′))

≤ 2ε+ d(x, x′).

The first and third inequalities apply the triangle inequality since D is subadditive. The second and fourth inequalities hold
as assumed above. The final inequality applies Definition 7.

Therefore IUD,dε(h ◦ f) ≤ 2δ.

B.5 Proof of Theorem 5 (Statistical Parity of Optimal Adversary)
Proof. Let

BER(h) :=
1

2
p(Ŷ = 0|S = 1) +

1

2
p(Ŷ = 1|S = 0)

be the balanced error rate of a hypothesis h. Observe that we have SP (h) = 1− 2BER(h) for all h.
Therefore

max
g∈G

SP (g ◦ f)

= 1− 2min
g∈G

BER(g ◦ f)

= 1− EXf [min(
ηfS(X

f )

πS
,
1− ηfS(Xf )

1− πS
)]

where the final equality uses Equation 32 from Zhao et al. 2013.



Similarly,

min
g∈G

SP (g ◦ f)

= 1− 2max
g∈G

BER(g ◦ f)

= 1− 2max
g∈G

[1−BER(1− g ◦ f)]

= −1 + min
g∈G

BER(1− g ◦ f)

= −1 + min
g∈G

BER(g ◦ f)

= −1 + EXf [min(
ηfS(X

f )

πS
,
1− ηfS(Xf )

1− πS
)]

where for the second equality we used the fact that BER(h) = 1−BER(1− h) for all h.

B.6 Proof of Theorem 6 (Disparate Impact of Optimal Adversary)
Proof. Disparate impact can be expressed as follows:

DI(g ◦ f)

=
p(Ŷ f = 1|S = 0)

p(Ŷ f = 1|S = 1)

=

∫
z
p(Xf = z|S = 0)p(Ŷ f = 1|S = 0, Xf = z)dz∫

z
p(Xf = z|S = 1)p(Ŷ f = 1|S = 1, Xf = z)dz

=

∫
z
p(Xf = z|S = 0)g(z)dz∫

z
p(Xf = z|S = 1)g(z)dz

=
πS

∫
z
p(Xf = z)(1− ηfS(z))g(z)dz

(1− πS)
∫
z
p(Xf = z)ηfS(z)g(z)dz

=
πSEXf [(1− η

f
S(X

f ))g(Xf )]

(1− πS)EXf [η
f
S(X

f )g(Xf )]
.

For the third equality we used the fact that Ŷ f and S are conditionally independent given Xf . For the fourth equality we
used Bayes’ rule.

Recall that ηfS := max
z∈Z

ηfS(z) and ηf
S
:= min

z∈Z
ηfS(z). Let γ be an arbitrary constant in the range (0, 1]. Using the form of

DI(g ◦ f) above, we have:

max
g∈G

DI(g ◦ f) =
πS(1− ηfS)
ηfS(1− πS)

where the maximum is obtained for

g(z) =

{
γ if ηfS(z) = ηf

S

0 otherwise.

Similarly,

min
g∈G

DI(g ◦ f) =
πS(1− ηfS)
ηfS(1− πS)

where the minimum is obtained for

g(z) =

{
γ if ηfS(z) = ηfS
0 otherwise.
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Figure 2: Two examples illustrating the cost of mistrust.

C Examples of the Cost of Mistrust
We use examples to demonstrate that the cost of mistrust may be either zero or positive, as depicted in Figure 2. Let X =
Z = {1, 2}, cY = cS = 0.5, p(X = 1) = p(X = 2) = 0.5, λ = 1 in (3), (5) and (9). In both examples, ηS(1) = 0.6 and
ηS(2) = 0.4. In (a) ηY (1) = 0.7 and ηY (2) = 0.9, while in (b) ηY (1) = 0.3 and ηY (2) = 0.5. While setting f to map all
points to a constant is a crude example, it suffices for our illustration. In (a) the cost of mistrust is 0, while in (b) it is 0.05. This
is because in (a), h∗ predicts the same value for the two points combined by f and is hence unaffected by f , while in (b), h∗
predicts different values and is hence affected by f .

We compare the representation f(x) = 2 to the identity representation fI(x) = x, which makes our analysis sufficiently
general to cover all choices of representation. First we show that in both examples f is a solution to (5). In the first example,
we may show RY (g

∗
Y ◦ f) = RY (g

∗
Y ◦ fI) = 0.1 by applying (6). However, using (7) we may show RS(g

∗
S ◦ f) = 0.25,

while RS(g∗S ◦ fI) = 0.2. Similarly in the second example, RY (g∗Y ◦ f) = RY (g
∗
Y ◦ fI) = 0.2, while RS(g∗S ◦ f) = 0.25 and

RS(g
∗
S ◦ fI) = 0.2.

Now we compute the cost of mistrust for both cases by applying Theorem 2. In the first example,

RY S(g
∗ ◦ f)−RY S(h∗) = (1× 0)− (0.5× 0.1 + 0.5×−0.1) = 0− 0 = 0.

In the second example,

RY S(g
∗ ◦ f)−RY S(h∗) = (1×−0.1)− (0.5×−0.2 + 0.5×−0.1) = 0.05.

Thus we observe that it is straightforward to construct examples where the cost of mistrust is both zero as well as those where
the cost of mistrust is positive.

The examples in Figure 2 can be used as intuition for interpreting the expression for the cost of mistrust in Theorem 2.
For some point z ∈ Z , define its preimage Xz := {x ∈ X |f(x) = z}. If for all x ∈ Xz , we have the same value of
1(ηY (x)− cY ≥ λ(ηS(x)− cS)) as in example (a), then the expectation conditioned on x ∈ Xz will be zero. Otherwise, as in
example (b), the conditional expectation will be positive.

D Experiments
We conducted experiments with two objectives in mind. First, to show that the formalization of the fair representation learning
problem we suggested in Section 3 can be used in practice. Second, to illustrate how the costs and benefits identified in Sections
4 and 5 can be estimated and interpreted without requiring access to the target variable.

D.1 Datasets
We used the UCI Adult and ProPublica recidivism datasets, which are both well-known in the fair machine learning literature
(e.g. Calmon et al. 2017). These datasets are located at https://archive.ics.uci.edu/ml/datasets/adult
and https://github.com/propublica/compas-analysis respectively. We selected S to be gender for Adult and
whether the person is of African-American ethnicity for ProPublica. Our experiments do not depend on a particular choice of
Y . We learn f using 70% of the data and report results on the remaining 30%.

The Adult dataset contains financial and demographic information compiled from a census about 32561 people and contains
110 input columns once categorical features are binarized. We selected S as gender, while a possible choice of Y is whether



the person’s income is at least $50,000. This setting is similar to a situation where a financial institution makes an algorithmic
decision about whether to grant an individual a loan based on a prediction of their income.

The ProPublica dataset contains information about 7214 criminal offences committed in Broward County, Florida and con-
tains 79 input columns once categorical features are binarized. We processed the free text crime description column by con-
verting it to a categorical variable where descriptions occurring at least 20 times have their own category (covering 82.9% of
all offences) and all other descriptions are marked as ‘other’, then binarized the categorical variable. We selected S as whether
the person is of African-American ethnicity, while a possible choice of Y is whether the person reoffended within two years.
This setting is similar to a situation where sentencing decisions are made based on an algorithmic assessment of the individual’s
likelihood of reoffending.

D.2 Method
We approximate (8) by estimating f with an encoder neural network, testing several values of λ. We use a finite sample to
estimate the average reconstruction error component of the cost function. To estimate the RS(g∗ ◦ f) component of the cost
function we use the form given by (7) with cS = 0.5, train another evaluator neural network to estimate ηfS(z), and use a
finite sample to approximate the expectation. The evaluator is comparable to the ‘adversary’ in (Edwards and Storkey 2016;
Beutel et al. 2017; Madras et al. 2018) since we alternate updating its weights with those of the encoder. However, the evaluator
is used to estimate (7) which is used to evaluate f , rather than its performance directly being used to evaluate f . This approach
is motivated by the fact that (7) gives us the performance of the optimal adversary.

Our training set consists of N points, where the input and sensitive variable values for the nth point are given by xn and
sn respectively. We estimate f using a fully-connected encoder neural network with one softplus (softplus(x) := ln(1 + ex))
hidden layer of 100 units and a linear output layer with the same number of units as the input layer. To approximate (8) we
update f to minimize the following cost function.
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We compute η̃fS to estimate ηfS(z) using a fully-connected evaluator neural network with one softplus hidden layer of 100
units and a single sigmoidal output unit. The output layer of the encoder, which corresponds to the variable Xf , is the input
layer for the evaluator. For the evaluator network we update η̃fS to minimize the following cost function.
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We alternate updates of the weights in the encoder and evaluator networks, as in adversarial methods (Edwards and Storkey
2016; Beutel et al. 2017; Madras et al. 2018). We use the Adam Optimizer with a learning rate of 0.0001, a batch size of 100
and set the training set epochs to 100. We implemented the model in Python using the TensorFlow library.

We set the large reconstruction error rate threshold ε := 0.1× 1
N
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‖xn‖2 and set the individual fairness distance function

d(x, x′) := ‖x−x′‖2. We evaluate the costs and benefits of a representation f using the following empirical estimates computed
over a test set of N ′ points:
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Costs Benefits

Figure 3: Estimates of costs and benefits of fair representation learning on Adult and ProPublica datasets. Lower is better on all
plots. See text for discussion.

D.3 Results
We show our results in Figure 3. For several values of λ, we estimate the costs and benefits of the learned representation f . The
trends for both datasets are similar. A subtlety is that we report proxies for the costs motivated by our theoretical results, which
can be estimated by the data user without access to the target variable.

Recall that we may use average reconstruction error to upper bound the cost of mistrust (Theorem 3) and the large recon-
struction error rate to upper bound the cost for individual fairness (Theorem 4). Estimates of both of these cost proxies increase
with λ, as the cleaned data becomes more distorted by f .

Furthermore, recall that we have the closed form of an adversary’s maximum statistical parity (Theorem 5) and disparate
impact (Theorem 6). Estimates of both of these quantities decline as λ increases, indicating benefits from using f . For disparate
impact we use a log scale on the y-axis for clarity, and observe that its empirical estimates appear noisier than those of statistical
parity, since it requires us to estimate the minimum rather than the expectation of ηfS(z).

Our experiments, when combined with our theoretical results, reveal that the choice of λ in (8) starkly determines the relative
costs and benefits of fair representation learning.


