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Abstract

In artificial intelligence (AI) mediated workforce manage-
ment systems (e.g., crowdsourcing), long-term success de-
pends on workers accomplishing tasks productively and rest-
ing well. This dual objective can be summarized by the con-
cept of productive laziness. Existing scheduling approaches
mostly focus on efficiency but overlook worker wellbeing
through proper rest. In order to enable workforce manage-
ment systems to follow the IEEE Ethically Aligned Design
guidelines to prioritize worker wellbeing, we propose a dis-
tributed Computational Productive Laziness (CPL) approach
in this paper. It intelligently recommends personalized work-
rest schedules based on local data concerning a worker’s ca-
pabilities and situational factors to incorporate opportunistic
resting and achieve superlinear collective productivity with-
out the need for explicit coordination messages. Extensive ex-
periments based on a real-world dataset of over 5,000 work-
ers demonstrate that CPL enables workers to spend 70% of
the effort to complete 90% of the tasks on average, providing
more ethically aligned scheduling than existing approaches.

Introduction
In today’s world, artificial intelligence (AI) has been em-
ployed to manage large-scale workforces such as crowd-
sourcing systems (Miao et al. 2016; Michelucci and Dick-
inson 2016; Pan et al. 2016). For example, in DiDi Chuxing,
AI technologies are deployed to dynamically match driver-
s to tasks in order to enhance operation efficiency (Xu et
al. 2018). Human workers become fatigued or bored over
long sessions of work, which can cause inefficacy (Leiter
and Maslach 2015). A recent study found that short breaks
significantly improve workers’ motivation while maintain-
ing the quality of work (Dai et al. 2015). However, existing
AI approaches for workforce management in crowdsourcing
mostly do not explicitly incorporate rest into their recom-
mendations (Chai et al. 2017).

From an ethically aligned design perspective (The IEEE
Global Initiative on Ethics of Autonomous and Intelligen-
t Systems 2018), it is desirable to incorporate breaks into
scheduling approaches in order to prioritize workers’ well-
being. Nevertheless, as highlighted in (Yu et al. 2018), eth-
ically aligned AI approaches need to be designed such that
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they balance the concern for human wellbeing while stil-
l achieve their design objectives. In this paper, we set out
to address this challenge by proposing an ethically aligned
opportunistic scheduling approach that can achieve “produc-
tive laziness” - Computational Productive Laziness (CPL).

Originally conceptualized in social sciences literature,
productive laziness (Whillans et al. 2017) is a rule-of-thumb
guideline on how workers should approach their work in or-
der to achieve work-life balance. The general idea is to work
when you are highly efficient, and rest otherwise. CPL coor-
dinates workers to work when situational factors induce high
efficiency or demand working, and rest when they do not.
Thus, it is important to identify factors influencing worker-
s’ productivity and the urgency of work. We formulate the
problem of achieving productive laziness in large-scale sys-
tems as a multi-objective constrained optimization problem.
Following the Lyapunov optimization-based framework (Yu
et al. 2016), we analyse the interaction dynamics involved in
a workforce management system and derive a novel Work-
Rest Index (WRI) which expresses the interplay among four
aspects affecting worker effort output:

1. Situational factors: the current workload pending in each
worker’s backlog, and how long they have been pending
(as tracked by the system);

2. Worker performance: each worker’s productivity based on
past observation data;

3. System-level preference: the emphasis, given by the sys-
tem operators, on achieving high collective productivity
compared to allowing for workers to be more rested; and

4. Personal preference: each worker’s mood at a given time
which is used to infer the level of productivity that can be
expected from the worker in the immediate future follow-
ing the happy-productive worker thesis (Oswald, Proto,
and Sgroi 2015).

Based on this index, CPL dynamically determines the tim-
ing and amount of work a worker should perform in or-
der to conserve the collective effort output while maintain-
ing a high level of collective productivity in the system. It
can be implemented in a distributed manner as a person-
al scheduling agent with a computational time complexity
of O(1). This enables it to effectively support the need for
real-time scheduling for large-scale workforce management.



CPL allows human values to be codified and algorithmical-
ly guide the recommendations by the scheduling agent to
balance worker wellbeing and system throughput. Through
extensive numerical experiments based on a large-scale real-
world dataset containing over 5,000 workers’ performance
characteristics, CPL is shown to significantly outperform al-
ternative approaches, consistently achieving superlinear col-
lective productivity (Sornette, Maillart, and Ghezzi 2014).

Related Work
Existing AI-powered workforce management approaches
(Lee et al. 2015) can be divided into two main categories:
(1) the direct approaches and (2) the indirect approaches.

Some direct approaches seek to balance the division of
labour among workers in a situation-aware manner through
data-driven deliberation (Mason and Watts 2012; Yu et al.
2013a; Dai et al. 2013; Tran-Thanh et al. 2014b; Yu et al.
2015; 2016; Grossmann, Brienza, and Bobocel 2017; Yu et
al. 2017a). Others design reputation and/or incentive mech-
anisms to motivate workers to work harder (Yu et al. 2011;
Mao et al. 2013; Yu et al. 2013b; Tran-Thanh et al. 2014a;
Miao et al. 2016; Zeng, Tang, and Wang 2017). They gen-
erally leave it up to the workers to plan their rest break-
s. There are approaches which implicitly limit how long
a worker can continuously work by setting a budget on
the number of tasks they are allocated (Chen et al. 2015;
Zenonos, Stein, and Jennings 2016). However, these ap-
proaches do not opportunistically take advantage of periods
when a worker a highly productive (e.g., periods of good
mood in our approach). Such ad hoc planning may not help
the system maintain high collective productivity. With CPL,
a desirable balance between worker wellbeing and collective
productivity can be achieved.

Indirect approaches (Morris, Dontcheva, and Gerber
2012) seek to induce good mood among workers in order
to improve their productivity. This is based on the happy-
productive worker thesis (Oswald, Proto, and Sgroi 2015),
which suggests that good (bad) mood improves (hampers)
productivity. They also do not explicitly recommend resting
to workers.

A recent work (Yu et al. 2017b) is starting to explore how
to opportunistically schedule rest. However, it does not ac-
count for how long tasks have been pending in workers’
backlog and can lead to schedules which do not make busi-
ness sense. Without considering the urgency of the tasks, it
is vulnerable to workers misreporting their mood. With the
conceptual queue technique developed in this paper, CPL
considers workers’ wellbeing, system objectives and situa-
tional factors in a more holistic manner, and is better able to
deal with misbehaving workers trying to game the system.

The Proposed CPL Scheduling Approach
The system model in this paper consists of a set of N work-
ers and a set of M tasks at any given time slot t.

• Workers are associated with personal profiles. Each pro-
file contains information on a worker i’s task backlog
queue qi(t) and his maximum productivity µmax

i which
indicates the maximum workload he can complete in a

given time slot t. The granularity of t can be adjusted to
fit any given system’s requirements. The ground truth of
µmax
i may not be directly observable. With analytics tools

such as Turkalytics (Heymann and Garcia-Molina 2011),
it can be tracked and estimated statistically.

• Tasks are associated with task profiles. The most impor-
tant information for our purpose is the task deadline which
is expressed in terms of number of time slots since task
creation before which a given task must be completed.

The number of workers and tasks available in a given system
at different time slots may differ.

We model the dynamics of a worker i’s task backlog
queue following previous research (Yu et al. 2013a; 2015):

qi(t+ 1) = max[0, qi(t) + λi(t)− µi(t)] (1)

where λi(t) is the number of new tasks delegated to worker
i during time slot t; and µi(t) is the number of tasks com-
pleted by worker i during time slot t. Based on the ‘happy-
productive worker’ thesis which suggests that productivity
is positively correlated to mood (Oswald, Proto, and Sgroi
2015), µi(t) can be expressed as a function of i’s current
mood and how much effort he spends on the tasks:

µi(t) = µ(ξi(t),mi(t)) = bξi(t)mi(t)µ
max
i c (2)

where ξi(t) ∈ [0, 1] is the normalized effort worker i spends
during time slot t. mi(t) ∈ [0, 1] is worker i’s mood during
time slot t, where 1 denotes the most positive mood. It can
be self-reported by a worker using tools such as MoodPan-
da (http://moodpanda.com/), or through facial im-
age analytics (e.g., in-vehicle monitoring of drivers’ mood
(Zimasa, Jamson, and Henson 2017)). Here, we treat mi(t)
as an external parameter to CPL and do not assume that the
system is capable of predicting future mood values.

Deriving the Work-Rest Index
In order to take task pending time into account, we propose a
conceptual queue technique. Let Qi(t) denote a conceptual
queue which is being managed by a CPL agent on behalf of
a worker i. The queuing dynamics of this conceptual queue
is defined as:

Qi(t+1) = max[0, Qi(t)+µmax
i 1[qi(t)>0 & µi(t)=0]−µi(t)]

(3)
where 1[condition] is an indicator function. Its value is 1 if and
only if [condition] is satisfied; otherwise, it evaluates to 0.
When first created, a conceptual queue is empty. The con-
ceptual queue starts from 0 at t = 0 (i.e. Qi(0) = 0). Its
size increases by µmax

i if and only if worker i’s pending task
queue is not empty at time slot t and worker i rests during
this time slot. Its size decreases in the same way as qi(t).

For simplicity of notation, we denote
µmax
i 1[qi(t)>0 & µi(t)=0] as xi(t). Then, equation (3)

can be re-expressed as:

Qi(t+ 1) > Qi(t) + xi(t)− µi(t). (4)

By re-arranging the above inequality, we have:

Qi(t+ 1)−Qi(t) > xi(t)− µi(t). (5)



Summing both sides of the above inequality over all t ∈
{0, ..., T − 1} yields:

T−1∑
t=0

[Qi(t+ 1)−Qi(t)] >
T−1∑
t=0

[xi(t)− µi(t)]. (6)

Thus, we have:

Qi(T )−Qi(0) >
T−1∑
t=0

[xi(t)− µi(t)]. (7)

Since Qi(0) = 0, the above inequality is simplified as:

Qi(T )

T
>

1

T

T−1∑
t=0

xi(t)−
1

T

T−1∑
t=0

µi(t). (8)

From equation (8), it can be observed that the effect of the
conceptual queue is to signal the scheduling approach as to
when the need to reduce pending workload shall take prece-
dence over helping workers plan their rest. By ensuring that
the computed µi(t) values satisfy the queueing stability re-
quirement of 1

T

∑T−1
t=0 µi(t) > 1

T

∑T−1
t=0 xi(t) for the con-

ceptual queue, a scheduling approach will ensure that tasks
do not stay pending indefinitely.

By jointly considering qi(t) and Qi(t), the Lyapunov
function (Neely 2010) which measures the overall concen-
tration of work among workers in a given system during time
slot t is:

L(t) =
1

2

N∑
i=1

[q2
i (t) +Q2

i (t)]. (9)

A large value of L(t) indicates that tasks are highly con-
centrated among a small number of workers and/or that
tasks have been pending for a long period of time. Both
of these scenarios are undesirable from a system produc-
tivity perspective and shall be avoided as much as possi-
ble. The constant term 1

2 is included to simplify subsequen-
t derivations without affecting the physical meaning of the
formulation. We adopt the time-averaged Lyapunov drift,
∆ = 1

T

∑T−1
t=0 [L(t+ 1)− L(t)], to measure the changes in

the degree of seriousness of these two scenarios over time.
We formulate a joint {effort output + drift} optimization

objective function as:

φE{ξ̃(t)|q̃(t), m̃(t)}+ ∆ (10)

which shall be minimized. φ > 0 controls the empha-
sis placed on conserving worker effort compared to getting
more work done. A larger φ value can be interpreted as
stronger emphasis on allowing workers to rest more. This
value can be set by the system operators to express system-
level preference on how to utilize the collective productivity
of the workers. ξ̃(t), q̃(t) and m̃(t) are vectors containing
the workers’ effort output values, the backlog queue sizes,
and the self-reported mood during time slot t, respectively.

Based on equation (1) and equation (9), the time-averaged

Lyapunov drift can be expressed as:

(11)

∆ =
1

T

T−1∑
t=0

N∑
i=1

[(
1

2
q2
i (t+ 1)

− 1

2
q2
i (t)

)
+

(
1

2
Q2
i (t+ 1)− 1

2
Q2
i (t)

)]
=

1

T

T−1∑
t=0

N∑
i=1

[(
1

2
max[0, qi(t) + λi(t)−

µi(t)]
2 − 1

2
q2
i (t)

)
+

(
1

2
max[0, Qi(t) +

µmax
i 1[qi(t)>0 & µi(t)=0] − µi(t)]2 −

1

2
Q2
i (t)

)]
6

1

T

T−1∑
t=0

N∑
i=1

[(
qi(t)[λi(t)− µi(t)]

− µi(t)λi(t) +
1

2
[λ2
i (t)− 2λi(t)µi(t) + µ2

i (t)]

)
+

(
Qi(t)[µ

max
i 1[qi(t)>0 & µi(t)=0]

− µi(t)] +
1

2
[(µmax

i )21[qi(t)>0 & µi(t)=0] −

2µmax
i 1[qi(t)>0 & µi(t)=0]µi(t) + µ2

i (t)]

)]
.

This formulation enables simultaneous modelling of the ab-
solute sizes of the real and the conceptual queues, the distri-
bution of congestions among these queues, and the fluctua-
tions of these queues over time. All three quantities should
be minimized in order to optimize our design objectives.
In this way, we translate system-level efficiency and worker
wellbeing requirements into queueing system stability con-
cepts. Then, through maintaining queue system stability, C-
PL achieves these desirable objectives.

Since neither λi(t) nor µi(t) can be infinite in real-world
systems, we can simplify ∆ as:

(12)

∆ 6
1

T

T−1∑
t =0

N∑
i =1

[(
qi(t)[λi(t)− µi(t)]

− µi(t)λi(t) +
1

2
[λ2

max + µ2
max]

)
+

(
Qi(t)[µmax1[qi(t)>0 & µi(t)=0]

− µi(t)] +
1

2
[µ2

max1[qi(t)>0 & µi(t)=0] + µ2
max]

)]
.

where λmax > λi(t) and µmax > µi(t) for all i and t are
constant values. As we only aim to influence µi(t) with rec-
ommendations, we only retain terms containing µi(t). In this
way, by substituting equation (12) into equation (10), we ob-
tain the following objective function:

Minimize:

1

T

T−1∑
t=0

N∑
i=1

ξi(t)[φ− (qi(t) +Qi(t))mi(t)µ
max
i ] (13)



Subject to:
0 6 ξi(t) 6 1,∀i,∀t (14)

0 6 µ(ξi(t),mi(t)) 6 µ
max
i ,∀i,∀t (15)

By minimizing equation (13) subject to Constraints (14) and
(15), we simultaneously minimize the time-averaged total
worker effort output while maximizing the time-averaged
collective productivity in a given system. To minimize e-
quation (13), at each time slot t, we need to compute the
values of the expression [φ− (qi(t) +Qi(t))mi(t)µ

max
i ] for

all i. For simplicity of notation, we denote [φ − (qi(t) +
Qi(t))mi(t)µ

max
i ] as the Work-Rest Index (WRI), Ψi(t).

This index enables a scheduling agent to efficiently search
through a very large solution space to determine if the cur-
rent situation is more suitable for work or rest.

Opportunistic Work-Rest Scheduling
Algorithm 1 presents a distributed implementation of the C-
PL approach as a scheduling agent for each worker. For a
worker i, if Ψi(t) < 0, it sets ξi(t) = min

[
1, qi(t)

mi(t)µmax
i

]
and computes the corresponding µi(t) value; otherwise, it
advises the worker to rest for the current time slot. The com-
putational time complexity of Algorithm 1 is O(1), making
it highly scalable. The algorithm implements computation-
ally the intuition that the more pending tasks in a worker’s
backlog queue, the longer these tasks have been pending,
the more emphasis on worker wellbeing by system opera-
tors, and the higher the worker’s current mood, the more
effort should be expended towards completing tasks (subject
to the physical limitations of the worker’s effort output per
time slot).

Algorithm 1 CPL
Require: φ, qi(t), µmax

i and mi(t).
1: if Ψi(t) < 0 then
2: ξi(t) = min

[
1, qi(t)

mi(t)µmax
i

]
;

3: Compute µi(t) according to equation (2);
4: else
5: ξi(t) = 0;
6: µi(t) = 0;
7: end if
8: return µi(t);

WRI incorporates the ethical considerations (Yu et
al. 2018) by prioritizing worker wellbeing considerations
through recommending opportunistic rest breaks, and allow-
ing stakeholders to influence the AI recommendations by ex-
pressing their preferences through φ and mi(t). The recom-
mendations from CPL are given to a worker in the form of
the number of tasks he should complete over a given time
slot (a 0 value indicates that the worker should rest) so as to
make it actionable enough for the worker to follow.

Experimental Evaluation
To evaluate the performance of CPL under realistic set-
tings, we compare it against four alternative approaches

through extensive simulations. The characteristics of worker
agents in the simulation are derived from the Tianchi dataset
(http://dx.doi.org/10.7303/syn7373599) re-
leased by Alibaba. This real-world dataset contains infor-
mation regarding 5,547 workers’ reputation (i.e. quality of
work) and maximum productivity (i.e. the maximum num-
ber of tasks a worker can complete per time slot). This
dataset allows us to construct realistic simulations.

Experiment Settings
The five comparison approaches are:

1. The Max Effort (ME) approach: under this approach, a
worker agent i always works as long as there are tasks in
its backlog queue regardless of its mood.

2. The Mood Threshold (MT) approach: under this approach,
a worker agent i works whenever mi(t) > θ1 and there
are tasks in its backlog queue, where θ1 ∈ [0, 1] is a pre-
determined mood threshold used by MT.

3. The Mood and Workload threshold (MW) approach: this
approach jointly considers a worker agent i’s curren-
t mood and workload to determine how much effort to
exert. Whenever qi(t)µ(1,mi(t)) > µmax

i µ(1, θ2), work-
er i exerts up to the maximum effort subject to there being
enough tasks in its backlog queue, where θ2 ∈ [0, 1] is a
predetermined mood threshold used by MW.

4. The Affective Crowdsourcing (AC) approach (Yu et al.
2017b) which is similar to CPL but does not take task
pending time into account.

5. The CPL approach proposed in this paper.
The approach used to delegate tasks to worker agents un-

der all comparison approaches is SMVM (Yu et al. 2017a). It
dynamically distributes tasks among workers in a situation-
aware manner in order to avoid over concentration of work-
load. At each time slot, SMVM determines how many tasks
to delegate to each worker agent i in the simulations (i.e. S-
MVM computes λi(t) for all i and t) based on its current
reputation and workload. The principle implemented by S-
MVM is that the higher a worker agent’s reputation and the
lower its current workload, the more tasks should be dele-
gated to it. SMVM can be replaced by any other approach
(Ho, Jabbari, and Vaughan 2013; Basu Roy et al. 2015) as
long as such an approach can determine the values of λi(t)
for all i and t.

In order to create different experiment conditions, we vary
the value of φ between 5 and 100 in increments of 5. The
values of θ1 and θ2 are varied between 0.05 and 1 in in-
crements of 0.05. The system workload is measured in re-
lation to the maximum collective productivity of the work-
er agent population, Ω =

∑N
i=1 riµ

max
i . In this equation,

ri is a worker agent i’s reputation and N = 5, 547. We
adopt the concept of load factor (LF) from (Yu et al. 2016;
2017a) to denote the overall workload placed on the system.
It is computed as the ratio between the number of new tasks
delegated to the worker agents during time slot t, Wreq(t),
and the maximum collective productivity Ω of the system
(i.e. LF =

Wreq(t)
Ω ). We vary LF between 5% to 100% in

5% increments.



Throughout the experiments, the mood for each worker a-
gent i during time slot t,mi(t), is randomly generated in the
range of [0, 1] following a uniform distribution. This elimi-
nates the possibility for any of the comparison approaches to
predict a worker agent’s future mood based on previous ob-
servations, thereby focusing the experimental comparisons
on the effectiveness of the scheduling strategies. Under each
LF setting, the simulation is run for T = 10, 000 time slots.
All tasks must be completed within 3 time slots after they
have been delegated.

Evaluation Metrics
The performances of the five approaches in the experiments
are compared using the following metrics:

1. The time-averaged worker effort output, ξ̄ =
1
TN

∑T−1
t=0

∑N
i=1 ξi(t). The smaller the ξ̄ value, the

better the performance of an approach.
2. The time-averaged task expiry rate, ē =

1
TN

∑T−1
t=0

∑N
i=1

n
(e)
i (t)

qi(t)
, where n

(e)
i (t) is the num-

ber of tasks in i’s backlog which passed their deadlines
during a given time slot t. The smaller the ē value, the
better the performance of an approach.

3. The time-averaged task completion rate, µ̄ =
1
T

∑T−1
t=0

∑N
i=1 µi(t)

Ntotal(t)
, where Ntotal(t) is the total number

of tasks waiting to be completed in the system during a
given time slot t. The larger the µ̄ value, the better the
performance of an approach.
Since worker agents under the ME approach consistently

expend the most effort and achieve the highest task com-
pletion rate, we use ME as the baseline for comparing the
performance of other approaches under different LF, φ, σ,
θ1 and θ2 settings.

Results and Discussions
Figures 1(a)–1(d) show the time-averaged task expiry rates
achieved by MT, MW, AC and CPL respectively under vari-
ous experiment settings. As MT uses mood as the threshold
to control worker effort output, the changes in task expiry
are directly related to mood values (Figure 1(a)). On aver-
age, 29% of the tasks under MT expire before they can be
completed. MW is also a threshold-based approach. Howev-
er, its threshold consists of a combination of workers’ mood
and their current workload. Thus, its task expiry rate increas-
es with both mood and LF with the effect of mood being
more significant (Figure 1(b)). On average, 30% of the tasks
under MW expire before they can be completed. AC is not
a threshold-based scheduling approach. A worker can indi-
cate to AC his desire to rest by adjusting the value of the
control variable σ. As σ and LF values increase, an increas-
ing percentage of tasks expire under AC. On average, 7.5%
of the tasks under AC expire before they can be complet-
ed, which is significantly lower than MT and MW. As AC
only considers mood and workload when making work-rest
recommendations, workers may fall into the condition in
which their mood and workload trigger AC to recommend
resting. However, their workload is also not low enough to

cause the task delegation approach to delegate new tasks to
them. Therefore, AC continues to recommend resting un-
til pending tasks pass their deadlines and become expired.
This problem is addressed by CPL as it takes task pending
time into account with the conceptual queue technique when
optimizing work-rest scheduling. As shown in Figure 1(d),
increases in φ and LF values result in an increasing percent-
age of tasks expire under CPL. The task expiry rate under
CPL is lower than that under AC. On average, 5.4% of the
tasks under CPL expire before they can be completed, which
is significantly lower than MT, MW and AC considering the
scale of the experiment.

The time-averaged effort output ξ̄ achieved by all five ap-
proaches is shown in Figure 1(e). Compared to ME, all other
approaches achieved significant savings in effort as LF in-
creases. This is partially due to the SMVM task delegation
approach used in the simulations. When LF is low, tasks
are mostly concentrated on worker agents with good repu-
tation. In this case, the task backlogs of individual worker
agents who have been delegated tasks tend to be relative-
ly high, which makes scheduling approaches allocate less
time for these workers to rest in order to meet task dead-
lines. As LF increases, the workload is spread more evenly
among a larger segment of the worker agent population, cre-
ating more opportunities for scheduling approaches to slot
in rest breaks. The ξ̄ values achieved by MT, MW and AC
stabilize between 20% and 40% while that of CPL stabilizes
around 60%. MW achieves the lowest worker agent effort
output. The time-averaged task completion rates µ̄ achieved
by all five approaches are shown in Figure 1(f). It can be
observed that CPL achieves the highest µ̄ values which sta-
bilize around 85% and are higher than AC, MT and MW by
22%, 90% and 108%, respectively.

Figure 1(g) shows the performance landscape of MT,
MW, AC and CPL as a percentage of ME under differen-
t control parameter settings. MW and MT both use mood
thresholds (θ1 and θ2, respectively) to control effort output.
The higher the mood threshold values, the lower the effort
output (and hence the task completion rates) achieved by
MW and MT. On the other hand, mood serves as one of the
inputs to AC and CPL. Both AC and CPL allow a worker
agent to specify a general emphasis on conserving effort us-
ing variables σ and φ, respectively. The larger the values of
these variables, the more emphasis is placed on effort con-
servation. By varying the φ value in CPL, we can control the
trade-off between worker effort output and task completion
rate (from spending 92% of the ME effort output and achiev-
ing 99% of the ME task completion rate, to spending 53%
of the ME effort output and achieving 78% of the ME task
completion rate). CPL consistently and significantly outper-
forms both MT and MW, conserving significant worker ef-
fort while achieving high task throughput. In effect, CPL
limits the range of trade-off between work and rest achieved
by AC based on consideration of an additional situational
factor – the task pending time – in order to achieve better
collective performance. In the worst case scenario in which
θ1 and θ2 are set to 1, indicating that workers are unwilling
to work under any mood condition, the worker effort output
and the task completion rates achieved by both MT and MW
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Figure 1: Experiment results: (a) the time-averaged task expiry rates achieved by MT under various θ1 and LF settings; (b)
the time-averaged task expiry rates achieved by MW under various θ2 and LF settings; (c) the time-averaged task expiry rates
achieved by AC under various σ and LF settings; (d) the time-averaged task expiry rates achieved by CPL under various φ and
LF settings; (e) comparison of the time-averaged effort output achieved by various approaches under different LF settings; (f)
comparison of the time-averaged task completion rates achieved by various approaches under different LF settings; (g) the time-
averaged task completion rates vs. the time-averaged effort output achieved by various approaches under different parameter
settings as a percentage of those achieved by ME; (h) the time-averaged task completion rate vs. the time-averaged effort output
achieved by various approaches averaged over different parameter settings as a percentage of those achieved by ME.

are 0. This is expected as in MT and MW, mood is used as
the threshold to control effort output. However, under AC,
mood is only one of the situational factors considered by the
approach. CPL adds in task pending time on top of the sit-
uational factors used by AC to make scheduling decisions.
Even under scenarios in which φ is set to 100 (indicating that
workers place very high emphasis on rest), CPL is still able
to maintain a long-term average effort output of 53% taking
advantage of favourable working conditions whenever pos-
sible to achieve average task completion rates of about 78%.
This is more advantageous from a business perspective com-
pared to the worst case performance by AC of about 50%.

When we compute the averages of the results shown in
Figure 1(g) over their respective setting variables (i.e. φ, σ,
θ1 and θ2), we obtain Figure 1(h) showing the overview of
their performances. The diagonal dotted line represents lin-
ear productivity, meaning that an increase in effort output
results in a directly proportional increase in collective pro-
ductivity. It can be observed that ME, MT and MW all fall
on the linear productivity line, whereas AC and CPL are sig-
nificantly above this line in a region of superlinear produc-
tivity (Sornette, Maillart, and Ghezzi 2014). Under AC and
CPL, an increase in effort output results in a disproportion-
ally larger increase in collective productivity, indicating that
the collective productivity achieved is larger than the sum
of individual workers’ productivity. Overall, CPL achieves
89% of ME task completion rate with 69% of the ME worker
effort output, which is the most desirable work-rest trade-off
among the five approaches from a system perspective.

Conclusions and Future Work

Improving collective productivity is an important problem
facing many social and economic systems. How to dynam-
ically adapt workers’ work-rest schedules in response to
changing situations in order to maintain a high level of pro-
ductivity and worker wellbeing remains an open research
question. The proposed CPL approach translates consider-
ations on workers’ mood, workload and pending time of the
tasks in their backlogs into actionable personalized work-
rest schedules. It establishes a framework to model complex
relationships between work and rest, and helps workers op-
timize the balance between work and rest in order to achieve
superlinear collective productivity. Taking into account it-
s polynomial time complexity, CPL is an effective and s-
calable approach to help workers benefit from opportunistic
rest. By nudging workers to be ‘lazy’ at opportune times, C-
PL achieves collective productivity which is larger than the
sum of individual productivity. It provides a way to design
ethically aligned workforce management systems that sus-
tain long-term effective participation by promoting produc-
tive laziness among workers.

In future research, we plan to testbed CPL in a crowd-
sourcing platform (Pan et al. 2016) to reach out to more di-
verse users and study how to improve the approach in the p-
resence of various behaviour patterns and how to foster trust
(Shen et al. 2011) with user by explaining the rationale be-
hind the recommendations.
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