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Abstract

In contexts such as college admissions, hiring, and image
search, decision-makers often aspire to formulate selection
criteria that yield both high-quality and diverse results. How-
ever, simultaneously optimizing for quality and diversity can
be challenging, especially when the decision-maker does
not know the true quality of any criterion and instead must
rely on heuristics and intuition. We introduce an algorith-
mic framework that takes as input a user’s selection criterion,
which may yield high-quality but homogeneous results. Us-
ing an application-specific notion of substitutability, our al-
gorithms suggest similar criteria with more diverse results, in
the spirit of statistical or demographic parity. For instance,
given the image search query “chairman”, it suggests alterna-
tive queries which are similar but more gender-diverse, such
as “chairperson”. In the context of college admissions, we ap-
ply our algorithm to a dataset of students’ applications and re-
discover Texas’s “top 10% rule”: the input criterion is an ACT
score cutoff, and the output is a class rank cutoff, automati-
cally accepting the students in the top decile of their gradu-
ating class. Historically, this policy has been effective in ad-
mitting students who perform well in college and come from
diverse backgrounds. We complement our empirical analysis
with learning-theoretic guarantees for estimating the true di-
versity of any criterion based on historical data.

Introduction
In many application domains such as college admissions,
hiring, and image search, domain experts aim to develop
selection criteria that yield high-quality and diverse results.
However, they often operate under an unavoidable lack of
information: they do not know the true quality of any given
criterion, and instead must rely upon heuristics and intuition.
This makes it difficult to simultaneously optimize quality
and diversity. For example, consider choosing university ad-
missions criteria, a scenario where there is extremely lim-
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ited information about the true quality of any candidate. An
admissions officer’s intuition might suggest that admitting
students with an SAT score above 1400 would provide high-
quality candidates, but the criterion might admit few stu-
dents from minority groups. Nonetheless, there may be simi-
lar criteria, such as “SAT score above 1200 and class rank in
the top 10%” which yield high-quality and diverse student
bodies. Of course, a human decision-maker cannot search
over all related criteria by hand in order to discover criteria
that return diverse results. In this work, we present a frame-
work for automating this search procedure.

Our algorithms take as input a user-specified criterion
t, a pre-defined similarity measure among criteria, and a
set of examples. They suggest alternate criteria t′1, . . . , t

′
k

with greater estimated diversity on the set of examples but
which are similar to t. For example, t might be the image
search query “haircut” and t′1, . . . , t

′
k might include related

searches such as “hairstyles” and “popular haircuts”. We
model a criterion t as a function t : X → R, where X is
a set of observables, such as job applications, and R is a set
of results, perhaps indicating whether an applicant is hired.
Our algorithms rely on application-specific similarity func-
tions which measure how substitutable any two criteria are.
They also depend on functions that measure the diversity of
any criterion’s results. Our algorithms optimize the similar-
ity function while meeting a desired diversity constraint.

We apply our framework in three key areas: college ad-
missions, job search, and image search. In each application,
we suggest straight-forward, natural substitutability and di-
versity measures, and then exemplify how our techniques
can be used to find similar criteria that yield more diverse re-
sults. For example, in the case of college admissions, given
two criteria t and t′ and the sets Et and Et′ of students they
admit, we measure the similarity of t and t′ as a simple func-
tion of the symmetric difference between Et and Et′ . As
another example which illustrates the generality of our ap-
proach, we say that two jobs are similar if the requisite skills,
education, and training are transferable, as formalized by the
Department of Labor. We emphasize that in all of our ap-
plications, a domain expert could alter these two measures
as they see fit. Our goal is not to nail down a universally
optimal definition of substitutablity and diversity, but to in-
troduce this technique to domain experts who can determine
appropriate metrics for their specific applications. We also



provide provable guarantees for estimating the diversity of
any criterion given historical data. Thus, our algorithms can
use diversity estimates instead of true diversity scores.

We call our approach algorithmic greenlining as it is the
antithesis of redlining, the historic and systematic denial of
services to residents of specific communities, often due to
demographics. Greenlining is the conscious effort to pro-
mote minority interests and representation by using unbi-
ased criteria in day-to-day settings. In this work, we provide
individuals with computational tools to help them reduce the
intentional or unintentional bias encoded by their criteria.

Related work
Algorithmic fairness using similarity metrics. Our notion
of criterion similarity is reminiscent of the similarity metric
used over people for individually fair classification (Dwork
et al., 2012). As defined by Dwork et al. (2012), under an
individually fair classification system, similar individuals
should be treated (i.e., classified) similarly. Thus, it relies
on a similarity metric between individuals, often based on
high-dimensional attribute vectors. In contrast, we rely on a
notion of similarity between criteria.

Algorithmic fairness with and without quality scores. We
do not assume the user knows the true quality of any given
criterion or outcome. Thus, we cannot measure criterion fair-
ness using notions such as equalized odds (Hardt, Price, and
Srebro, 2016) which depend on ground truth. Rather, we can
use any notion that only depends on the outcomes of the cri-
teria (e.g., the fraction of students accepted under a given
university admissions criterion from a minority group), such
as statistical parity (Dwork et al., 2012).

Image search. Several works analyze the presence of bias
in image results from major search engines (Kay, Matuszek,
and Munson, 2015; Otterbacher, Bates, and Clough, 2017).
Others study how to achieve diversity in image search out-
side the context of algorithmic fairness. Given a query, these
works provide algorithms that return many different kinds of
images matching that query (e.g., (Kennedy and Naaman,
2008; Wang et al., 2010)). For example, an image search for
“apple” should not only return images of the fruit, but also of
the computer. Some works also study how to ensure the im-
age search results exhibit racial and gender diversity (Celis
et al., 2018). In contrast, our goal is to provide search sug-
gestions whose results are more diverse, rather than altering
the images returned by a search.

Fair ranking. In a vein similar to image search, many
researchers have studied how to rank a set of items
fairly (Zehlike et al., 2017; Yang and Stoyanovich,
2017; Karako and Manggala, 2018; Biega, Gummadi, and
Weikum, 2018; Singh and Joachims, 2018; Celis, Straszak,
and Vishnoi, 2018) and how to measure the fairness of an
existing ranking (Yang and Stoyanovich, 2017; Yang et al.,
2018). Unlike our work, these works assume the algorithm
has access to ground-truth quality scores.

Query suggestions. In addition to ranking, Information Re-
trieval systems often provide suggestions of alternative rele-
vant searches (e.g., (Jones et al., 2006)). The goal has gener-

ally been to help the user better meet their information seek-
ing needs. However, to the best of our knowledge, no prior
work in this domain has considered fairness or diversity.

We include additional related work in the appendix.

The general model and notation
In our model, there is an underlying set X × Z of exam-
ples (x, z) where x ∈ X represents the observable attributes
of an instance and z ∈ Z represents its protected attributes.
There is a set T of criteria. Each criterion t ∈ T is a func-
tion mapping the set X of observable attributes to a set R
of results. For example, in the case of college admissions,
R = {0, 1} and t(x) = 1 if and only if the student with
observable attributes x is admitted under criterion t.

We want to measure the diversity of a criterion given an
arbitrary multi-set E ⊆ X × Z of examples. In the admis-
sions example, E could be the set of students who apply to
some university on a given year. When the results are binary
(R = {0, 1}) given a multi-set of examples E, we use the
notation Et = {(x, z) | (x, z) ∈ E, t(x) = 1} to denote the
subset of examples (x, z) ∈ E such that t(x) = 1.

For every multi-set E ⊆ X × Z of examples and every
criterion t ∈ T , there is a diversity score div(t, E) ∈ [0, 1].
For example, t might be a threshold indicating that all stu-
dents with an SAT score above 600 should be admitted.
Given the set E of students, div(t, E) might measure the
fraction of admitted students who are Hispanic.

We assume we have a substitutability function σ where
σ(t, t′, E) ∈ [0, 1] indicates how good a substitute t′ is for
t given the multi-set of examples E, not accounting for fair-
ness or diversity. This captures how willing the agent would
be to replace their criterion t with the criterion t′. For in-
stance, someone searching for “doctor” might be happy to
instead search for “physician”. If each criterion is a range
of admissible standardized test scores, a small change in
thresholds might lead to a much more diverse set of ad-
mits. We assume that σ(t, t, E) = 1 for all t ∈ T and all
multi-sets E ⊆ X × Z. We occasionally refer to the dis-
tance dist(t, t′, E) between two criteria (using the word
“distance” loosely: we do not require that dist be symmet-
ric or that it satisfy the triangle inequality) and we define
dist(t, t′, E) = 1− σ(t, t′, E).

This definition of substitutability is extremely versatile:
it can measure both intrinsic and extrinsic similarity. As an
example of intrinsic similarity, we say at a high level that
two jobs are similar if the requisite skills, education, and
training are transferable, as formalized by the Department
of Labor. In this case, σ(t, t′, E) is independet of E. Mean-
while, as an example of extrinsic similarity, we say that two
university admissions criteria are similar if moving from one
criterion to the other does not drastically change the set of
admitted students. Thus, similarity is not intrinsic to the cri-
teria themselves, but is a function of how they interact with
the dataset at hand, i.e., σ(t, t′, E) depends on E as well as
t and t′. Again, we emphasize that the similarity metrics we
employ are only examples. A domain expert could employ
any definition they see fit.



Given an initial criterion t, our goal is to suggest a crite-
rion t′ that is largely substitutable (σ(t, t′, E) is close to 1)
and is diverse (div(t, E) is within a user-specified range).
Notation. We denote the ith entry of a vector v as v[i].

General model instantiations
We now instantiate our model in several settings: university
admissions, image search, and job applicant search. In the
appendix, we discuss the ethics of our data usage.

University admissions
We begin with a problem motivated by university admis-
sions. We represent a set of applicants by feature vectors
in [0, H)d, for some H ∈ R. We use data collected from the
University of Texas at Austin by the Texas Higher Education
Opportunity Project (THEOP). The features we focus on are
the students’ composite SAT scores, composite ACT scores,
and high school class rank (higher is better). We select our
minority group to consist of applicants who are identified as
“Black, Non-Hispanic” or “Hispanic” (z = 1) and our ma-
jority group to consist of “White, Non-Hispanic” applicants
(z = 0). Therefore, X = [0, H)d and Z = {0, 1}.

In our first experiment, the set T of criteria consists of all
axis-aligned hyperplanes intersecting [0, H]d. Specifically,
each criterion t ∈ T is defined by a dimension i ∈ [d]
and a threshold b ∈ [0, H]. The multi-set Et ⊆ E con-
sists of those tuples (x, z) with x[i] ≥ b. For any criterion
t such that Et 6= ∅, we define fm(t, E) to be the frac-
tion of individuals accepted by t who are minorities, i.e.,
fm(t, E) = 1

|Et|
∑

(x,z)∈Et
z. We define div to measure

how far this fraction is from a user-specified diversity level
c, i.e., div(t, E) = 1− |c− fm(t, E)|.

We define the substitutability of two criteria t and t′ based
on the overlap of the students accepted under the two rules.
UsingEt∆Et′ = (Et ∪ Et′)\(Et ∩ Et′) to denote the sym-
metric difference between Et and Et′ , we define

σ(t, t′, E) =

{
1− |Et∆Et′ |

m if |Et| ≤ |Et′ | ≤ 2 |Et|
0 otherwise.

By enforcing |Et| ≤ |Et′ | ≤ 2 |Et|, the number of appli-
cants admitted by the two criteria is not drastically different.

The multi-set E of feature vectors describes the first
50,000 applicants from the dataset who a) are identified
as “White, Non-Hispanic,” “Black, Non-Hispanic,” or “His-
panic,” and b) took the ACT. Of these, 24% are from the
minority group. Based on this, we set the fraction c of mi-
nority students in the definition of the function div to be
c = 0.24. Our input criterion t accepts all students whose
cumulative ACT score is above 56 (the dotted line in Fig-
ure 1b), which includes 11,484 majority students and 1,298
minority students, so div(t, E) = 0.87.

Our goal is to find a criterion t′ such that div(t′, E) ≥
0.95 (i.e., the fraction of admitted minority students is in
[0.19, 0.29]) and σ(t, t′, E) is as close to 1 as possible. (The
threshold 0.95 could be replaced by any other bound.) This
is summarized by the following optimization problem:

maximize σ(t, t′, E) subject to div(t′, E) ≥ 0.95. (1)

The new criterion’s output will be different from the origi-
nal criterion’s output since it will be more diverse, but the
change will be as small possible. Under the optimal solution
to Equation (1), students from the top 10% of their class are
admitted. This criterion t′ is illustrated by the solid line in
Figure 1c. It admits 14,582 majority and 5,576 minority stu-
dents, so div(t′, E) = 0.96. Moreover, σ(t, t′, E) = 0.69.

We thus rediscover the “top 10% rule” passed in 1997 by
the Texas legislature (H.B.588), which guarantees any Texas
student in the top 10% of their graduating class admission
into any of Texas’s public post-secondary institutions.

In the appendix, we describe our experiments in a more
general setting where each criterion is represented by the
intersection of multiple axis-aligned half-spaces. For exam-
ple, a criterion might require that an admitted applicant has
an ACT score above 50 and is in the top 40% of her class.
This generalization allows us to preserve a higher degree of
similarity while still increasing diversity. See Figure 2 for a
visualization of our experimental results.

Image search
In image search, our goal is to provide users with similar
image search terms that yield more diverse results. For ex-
ample, if a user begins with the Google search “haircut”,
the resulting images are often surprisingly male-dominated.
However, we find that there are often similar queries, such
as “popular haircuts”, which return more images of women.

Our model applies to any search engine, but we concen-
trate on Google and Bing in our experiments. We define the
set X of observable attributes to be the set of all images in-
dexed by Google and Z = {0, 1} to be the set of sensitive
attributes indicating gender. In particular, given an example
(x, z), z = 0 if and only if x is an image of a man. We define
the set of input examplesE to be the entire setX×Z. Given
a search criterion t such as “haircut”, we define t(x) to be 1
if the image x is displayed in the first fifty images returned
by a Google search for t and 0 otherwise, filtering Google’s
results so that they only return images of faces.

We adopt a simple diversity metric: given a search
term t and the top fifty images returned by this search,
how far from 50-50 is the gender ratio? In other words,
div(t, E) = 1−

∣∣∣ 12 − 1
50

∑
(x,z)∈Et

z
∣∣∣ .Given an even split,

1
50

∑
(x,z)∈Et

z = 1
2 , so div(t, E) = 1, and the closer

1
50

∑
(x,z)∈Et

z is to 0 or 1, the smaller div(t, E) is.
We base our similarity metric between search terms on

Bing’s lists of related searches. (We define diversity based
on Google and similarity based on Bing so that our results
are not concentrated on one search engine.) Whether the
search engine suggests a given term depends on the similar-
ity between that term and the original term. We assume that
the higher in the list a term is, the more similar it is to the
original search. Thus, we define the distance dist(t, t′, E)
(where dist(t, t′, E) = 1 − σ(t, t′, E)) to be the position
of t′ in the list of related searches given the original search
term t, divided by the list’s length, or 1 if t′ is not in the list.

In Figure 3, we display plots for two different searches.
For the sake of readability, we only plot a subset of the re-



(a) Cumulative SAT scores. (b) Cumulative ACT scores with original
criterion: ACT score above 56.

(c) Class rank with suggested criterion: top
10%.

Figure 1: University admissions when each criterion is defined by an axis-aligned half-space. The orange bars indicate the
number of white, non-Hispanic students whose features fall within a given range. The blue bars correspond to the black and
Hispanic students. The dotted line in Figure 1b represents the original criterion (cumulative ACT score above 56). The solid
line in Figure 1c represents the criterion returned by the system (class rank in the top decile).

(a) Majority students’ ACT scores versus class ranks.

(b) Minority students’ ACT scores versus class ranks.

Figure 2: University admissions when each criterion is de-
fined by the intersection of axis-aligned half-spaces. The
plots display the majority (Figure 2a) and minority (Fig-
ure 2b) groups’ ACT scores versus class ranks. The color-
bars indicate the number of students who fall in each bin.
The dotted lines represent the original criterion: ACT score
above 56. The solid lines represent the suggested criterion:
ACT score above 44 and class rank in the top decile.

lated searches. We can see that some searches have nearby
searches with diverse search results. For example, “necker-
chief” is similar to “scarf”, but the images associated with
“scarf” are almost all of women whereas the images asso-
ciate with “neckerchief” have a more balanced gender ratio.

Job search
We next instantiate our general model for job applicant
search. Given a recruiter’s original query such as “computer
programmer”, the goal is to provide her with alternative
search queries that return diverse sets of applicants.

To instantiate our general model, we define the set X of
observable attributes to be an abstract set of job applicants’
observable attributes. For example, X could be a set of indi-
viduals’ LinkedIn profiles. Let Z = {0, 1} be the set of sen-
sitive attributes which indicate gender. In particular, given an
example (x, z), z = 0 if and only if x corresponds to a man.
In this setting, we define the set of input examples E to be
the entire set X×Z. Each criterion t ∈ T corresponds to an
occupation. Given an individual (x, z), we define t(x) to be
1 if the individual is applying for the job t and 0 otherwise.

To measure diversity, we use workforce statistics from the
U.S. Census Bureau (2016). Given an occupation t, these
statistics tell us the fraction ωt of full-time workers in the
U.S. with that job year-round who are women. We define
diversity to measure how far from 1

2 that fraction is, i.e.,
div(t, E) = 1 −

∣∣ 1
2 − ωt

∣∣. If there is a 50-50 gender split,
then ωt = 1

2 and div(t, E) = 1. Meanwhile, the closer ωt
is to 0 or 1, the smaller div(t, E) is.

In order to characterize similarity among jobs, we use the
Department of Labor’s Standard Occupational Classification
(SOC) System, which organizes hundreds of occupations
into a single hierarchy. Occupations are grouped together if
they have similar duties or require similar skills, education,
or training (U.S. Office of Management and Budget, 2018).
For a small subset of the hierarchy, see Figure 5 in the ap-
pendix. We define the similarity of two jobs based on the
length of the path between them in the hierarchy. For two
jobs t and t′, let `(t, t′) be the length of this path. The max-
imum path length between any two leafs in this hierarchy is



(a) Original search: “scarf”

(b) Original search: “haircut”

Figure 3: Plots for image search. The position on the x-axis
of a image search t′ equals its position in Bing’s list of search
terms related to the original search t. Its position on the y-
axis equals the diversity div(t, t′, E). The line illustrates
the Pareto frontier of this bi-criteria optimization problem.

8. Thus, we define the substitutability of two jobs t and t′ as
σ(t, t′, E) = 1− `(t,t′)

8 so that it is in [0, 1].
In Figure 4, we display plots for two occupations. We

can see that some occupations have nearby occupations with
more diverse workforces. For example, “web developer” is
similar to “computer programmer”, but there are more fe-
male web developers than computer programmers.

Diversity estimation guarantees
In this section, we provide provable guarantees for finding
similar criteria with more diverse results. Here, our goal is
to estimate the diversity of any given criterion using his-
torical data. Calculating reliable diversity estimates is cru-
cial because in some settings, it may be preferable or even
mandatory to avoid using individuals’ protected attributes to
measure diversity. For example, an admissions officer may
not know the ethnicity of any college applicant from the cur-
rent year. However, they may have access to historical data,
such as the University of Texas data we use to run our exper-
iments, which they can use to form these estimates. Further-

(a) Original search: “computer programmers”

(b) Original search: “social workers”

Figure 4: Plots for job search. The position on the x-axis
of a job t′ equals the path length between it and the orig-
inal search t′ in the SOC hierarchy. Its position on the y-
axis equals the diversity div(t, t′, E). The line illustrates
the Pareto frontier of this bi-criteria optimization problem.

more, given estimates that reflect the diversity of any crite-
rion over society as a whole, a user can introduce policies,
such as a fixed college admissions criterion, that can stay
in place for years at a time. For example, they can be con-
fident that admitting students based on class rank will con-
sistently yield more diverse student bodies than admitting
students based on standardized test scores. Finally, using di-
versity estimates rather than true diversity scores in order to
choose among criteria means that no individual will be fa-
vored based on his or her sensitive attributes.

Throughout this section, we consider a setting where a cri-
terion t is a map t : X → {0, 1}. Given an example (x, z),
z ∈ [0, 1] is the degree to which x belongs to the minor-
ity group. Given a multi-set E = {(x1, z1), . . . , (xN , zN )}
of examples, we define fm(t, E) to be the degree to which
an average instance (x, z) ∈ Et belongs to the minor-
ity group. In other words, fm(t, E) = 1

|Et|
∑

(x,z)∈Et
z.

Recall that in the university admissions setting, we define
div(t, E) to measure how far fm(t, E) is from a user-
specified c ∈ [0, 1], i.e., div(t, E) = 1 − |c− fm(t, E)|.



To justify this choice of div(t, E), we prove that fm(t, E)
estimates the protected attribute of an example (x, z) ∼ µ
conditioned on t(x) = 1. In other words, fm(t, E) ap-
proximates E(x,z)∼µ[z | t(x) = 1] for all t ∈ T so
long as E has a sufficiently large number of candidates.
That is, we show that with probability at least 1 − δ over
the draw of E = {(x1, z1), . . . , (xN , zN )} ∼ µN , for all
t ∈ T such that Pr(x,z)[t(x) = 1] ≥ c, we have that∣∣fm(t, E)− E(x,z)∼µ[z | t(x) = 1]

∣∣ ≤ ε when N is suffi-
ciently large with respect to ε, δ, and c.

We use the learning-theoretic notion of VC dimen-
sion (Vapnik and Chervonenkis, 1971) to provide this sam-
ple complexity guarantee. VC dimension measures the in-
trinsic complexity of binary-valued function classes, or in
other words, classes of functions that map to {0, 1}. Given
a set G of functions which map an abstract domain A to
{0, 1} and a distribution µ′ over A, bounding the VC di-
mension of G allows us to bound the number of samples
a1, . . . , aN ∼ µ′ sufficient to ensure that the difference
between the average value 1

N

∑N
i=1 g (ai) of any function

g ∈ G over the samples and its expected value Ea∼µ′ [g(a)]
is small. VC dimension applies specifically to binary-valued
functions, so it does not immediately apply to our setting
because the protected attributes z are real-valued and we are
concerned with the conditional expectation E[z | t(x) = 1],
not the expectation E[z]. Nonetheless, we show how to use
the VC dimension of T to bound the number of samples
sufficient to ensure the difference between fm(t, E) and
E[z | t(x) = 1] is small, for any criterion t ∈ T . In many
applications, bounding the VC dimension of T is simple, so
applying this sample complexity bound is straight-forward.

Below, we define VC dimension in terms of an abstract
set of functions G which map a domain A to {0, 1}.
Definition 1 (VC dimension). We say that G shatters the
set S = {a1, . . . , aM} ⊆ A if for all binary vectors
b ∈ {0, 1}M , there is a function gb ∈ G such that gb (ai) =
b[i] for all i ∈ [M ]. The VC dimension of G, denoted
VCdim(G), is the size of the largest set that G shatters.

For example, recall the college admissions criteria we
study: axis-aligned half-spaces and the intersection of axis-
aligned half-spaces in Rd. For both, VCdim(T ) ∈ O(d).

We now present our sample complexity bound. The full
proof is in the appendix.

Theorem 1. For any ε ∈ (0, 1/2) and δ ∈ (0, 1), with prob-
ability 1−δ over the drawE = {(x1, z1), . . . , (xN , zN )} ∼
µN , for all t ∈ T such that Pr(x,z)[t(x) = 1] ≥ c,∣∣fm(t, E)− E(x,z)∼µ[z | t(x) = 1]

∣∣ ≤ ε when N ≥ N0 ∈
O
(

1
cε2

(
VCdim(T ) log 1

ε + log 1
δ

))
.

Estimation with correlated examples
Theorem 1 applies when the examples (x, z) are identi-
cally and independently distributed. In this section, we pro-
vide diversity estimation guarantees even when the exam-
ples are correlated. Rather than the i.i.d. assumption, we as-
sume there is a distribution µ̄ over datasets E of a fixed size
m, so the support of µ̄ is a subset of (X × Z)m. We show
how to use a set S =

{
E(1), . . . , E(N)

}
∼ µ̄N to estimate

EE∼µ̄ [fm(t, E)] for any criterion t ∈ T . One way to in-
terpret this result is in the setting where we wish to design
admissions criteria for a network of universities, such as all
U.S. public community colleges. If we have a criterion that
admits diverse students over a random set of N colleges, we
can be confident the criterion also admits diverse students
on average nationwide. Colleges may have correlated appli-
cants depending on geography, and this section’s results al-
low for this correlation. Specifically, we prove the following
guarantee. The full proof is in the appendix.
Theorem 2. For any ε, δ ∈ (0, 1), N ≥ N0 ∈
Θ
(

1
ε2

(
VCdim(T ) log (mVCdim(T )) + log 1

δ

))
sam-

ples are sufficient to ensure that with probability 1 − δ
over the draw of E(1), . . . , E(N) ∼ µ̄, for all t ∈ T ,∣∣∣ 1
N

∑N
i=1 fm

(
t, E(i)

)
− EE∼µ̄[fm(t, E)]

∣∣∣ ≤ ε.
Limitations

We now describe several limitations of our work, some of
which suggest directions for future research.

Scholars (Fryer Jr, Loury, and Yuret, 2007) have argued
that color-blind admissions criteria, like those we study, are
less effective at admitting students with strong academic per-
formance compared to race-aware criteria. However, race-
aware criteria may not be legal in many scenarios, in which
case our approach presents a promising alternative.

A second limitation is that it may be computationally ex-
pensive to search for similar criteria yielding more diverse
results. For example, this is the case in our university admis-
sions application when each criterion is defined by the in-
tersection of half-spaces. In fact, we prove that this problem
is NP-complete in the appendix. Formulating an approxima-
tion algorithm is a promising direction for future work.

Lastly, if there is no clear notion of substitutability among
criteria, then our framework will not apply. However, we
believe our examples illustrate that there are often straight-
forward ways to define substitutability.

Conclusion
We study the problem of suggesting similar criteria that
yield more diverse results. In our setting, a domain expert
chooses some selection criterion, such as an admissions cri-
terion to choose among a set of college applicants. We do not
assume she knows the true quality of any given criterion, or
that the notion of “true quality” is well-defined. Rather, she
uses heuristics and intuition to select a criterion she believes
will return high-quality results. At the same time, this expert
would like to ensure the results are diverse, but optimizing
for diversity and quality may be difficult without access to
ground-truth quality metrics. We introduce automated tech-
niques for suggesting similar criteria yielding more diverse
results. We demonstrate its strong performance in three crit-
ical domains: college admissions, image search, and job
search. Finally, we complement our experiments with the-
oretical guarantees, analyzing the amount of historical data
required to estimate criteria diversity.
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Additional related work
From a computational perspective, researchers studying algorithmic fairness have developed many algorithms assuming access
to ground truth quality scores of individuals or outcomes. For example, in fair binary classification, a learning algorithm receives
as input a training set of examples (x, y, z) where x is a set of observable attributes, z is a set of protected attributes, and y is a
ground truth binary label. The goal is to learn a binary classifier which nearly matches the training set’s ground truth labels, and
which satisfies a given notion of fairness (e.g., (Agarwal et al., 2018; Dwork et al., 2018; Hardt, Price, and Srebro, 2016; Zafar
et al., 2017)). Thus, the quality of a classifier is clear: it measures how well that classifier matches the training set or a test set
of fresh examples, potentially with the addition of a fairness loss function. In our setting however, the true quality of any given
criterion may not even be defined.

Several papers have studied fair machine learning in the context of unsupervised learning, though in settings that are orthog-
onal to ours. These include works on fair clustering (Chierichetti et al., 2017) and bias in word embeddings (Bolukbasi et al.,
2016; Caliskan, Bryson, and Narayanan, 2017).

Ethical data usage
In this section, we discuss the ethics of our data usage. We use human data in two settings: college admissions and image search.

College admissions data. We use college admissions data collected by the Texas Higher Education Opportunity Project
(THEOP), which is a part of Princeton University’s Office of Population Research. We use a public use dataset which consists of
college application data collected from the University of Texas at Austin, spanning from 1991 to 2003. Princeton’s Institutional
Review Board approved the administrative data collection and also the public release files. We requested access to these files
and were granted it.

According to the data documentation (Texas Higher Education Opportunity Project, 2008), THEOP has taken steps to de-
identify the data, including:
• Eliminating university-assigned applicant identification numbers and high school names, cities, and states.
• Eliminating small frequency (less than 20) cells by collapsing multiple values into range categories. For example, individual

test score values are collapsed into test score ranges.
• Setting some values to missing to preserve the well-established categories but to hide individual values.
Nevertheless, it might be possible to re-identify individuals in this dataset. However, since this data is publicly available and (to
the best of our knowledge) has been used by researchers in hundreds of academic works, we believe that our use of the dataset
will not increase the risk of re-identification.

Image search. The other setting in which we use human data is image search. We do not download or store any images – we
only store statistics in the form of Figure 3. We do not believe there is any risk of re-identification from these general statistics.

Additional results for university admissions
In this section, we generalize the setup in the main body by studying a setting where each criterion is represented by the
intersection of multiple axis-aligned hyperplanes. For example, a criterion might require that an admitted applicant has an ACT
score above 50 and is in the top 40% of her class. By generalizing the setup in the main body, we are able to preserve a higher
degree of similarity while still increasing diversity.

Given a d-dimensional feature space [0, H]d, every criterion t in the set T is defined by d thresholds b1, . . . , bd. We use the
notation t = (b1, . . . , bd). The set Et of admitted applicants consists of all those whose feature vectors x satisfy x[i] ≥ bi for
all i ∈ [d]. In other words, Et = {(x, z) : (x, z) ∈ E, x[i] ≥ bi,∀i ∈ [d]}.

In our experiments, we use the same notion of diversity and similarity as in the main body. Namely,

div(t, E) = 1−

∣∣∣∣∣∣0.24− 1

|Et|
∑

(x,z)∈Et

z

∣∣∣∣∣∣
and

σ(t, t′, E) =

{
1− |Et∆Et′ |

m if |Et| ≤ |Et′ | ≤ 2 |Et|
0 otherwise.

Given a criterion t = (b1, . . . , bd), the goal is to find an alternative criterion t′ = (b′1, . . . , b
′
d) ∈ T such that div(t′, E) ≥

0.95 and σ(t, t′, E) is as close to 1 as possible. (Of course, 0.24 and 0.95 could be replaced by any user-specified constants.)
As we prove in Theorem 3 via a reduction from the set cover problem, this problem is NP-complete. However, if the number
of dimensions d is a constant, then it is possible to solve the problem in poly(|E|) time since we can assume without loss of
generality that b′i ∈ {0, x1[i], . . . , xm[i], H + 1} for all i ∈ [d].



We use the same set E of applicants as described in the main body and again set the input criterion t to automatically accept
all students with a cumulative ACT score above 56. In other words, t = (56, 0, 0), where the first component corresponds to
ACT score, the second corresponds to SAT score, and the third corresponds to class rank. Figure 2 in the main body depicts
our algorithm’s output t′ = (44, 2140, 10), projected onto a 2-dimensional plane. The criterion t′ suggests relaxing the ACT
threshold but setting a stricter threshold on class rank and SAT score: students from the top 10% of their class with a cumu-
lative SAT score above 2140 and a cumulative ACT score above 44 should be admitted. The number of white, non-Hispanic
students returned by this criterion is 12,802 and the number of black or Hispanic students returned is 3,016. Therefore, the
fraction of students admitted under this criterion who are black or Hispanic is 0.19. In other words div(t′, E) = 0.95. Finally,
σ(t, t′, E) = 0.75.

Next, we prove that the above problem is NP-complete. We formalize the decision version of the problem below.
Definition 2 (Hyperplane intersection suggestion problem (HISP)). Given a set E = {(x1, z1) , . . . (xm, zm)} ⊆ X × Z, a
criteria t = (b1, . . . , bd) of examples, a diversity threshold c ∈ [0, 1], and a symmetric difference bound s, is there an alternative
criteria t′ = (b′1, . . . , b

′
d) such that |Et∆Et′ | ≤ s and 1

|Et′ |
∑

(x,z)∈Et′
z ≥ c?

We prove that the HICP is NP-complete via a reduction from the set cover problem, which we define below.

Definition 3 (Set cover problem (SCP)). Given a ground set [n], a family S = {S1, . . . , SN} ⊆ 2[n] of subsets such that their
union equals [n]

(
i.e.,

⋃N
i=1 Si = [n]

)
and a bound k, are there at most k sets S`1 , . . . , S`k ∈ S such that

⋃k
j=1 S`j = [n]?

Theorem 3. The hyperplane intersection suggestion problem (HISP) is NP-complete.

Proof. We give a reduction from the set cover problem to the HISP which operates in polynomial time. The reduction maps
an arbitrary SCP input ISCP to an HISP input IHISP . The input ISCP consists of a family S = {S1, . . . , SN} ⊆ 2[n] of N
subsets of [n] such that

⋃N
i=1 Si = [n] and a bound k. The input IHISP is defined as follows.

• The feature space X is N -dimensional, i.e., X = RN .
• The set E of input examples consists of N + n+ 1 elements (x1, z1) , . . . , (xN+n, xN+n+1). For i ≤ n, xi indicates which

sets in S the point i falls in. Specifically,

xi[j] =

{
0 if i ∈ Sj
1 otherwise.

For i ∈ {1, . . . , N}, xn+i is all-ones vector minus the ith standard basis vector. Specifically, xn+i[i] = 0 and xn+i[j] = 1
for all j 6= i. Finally, xN+n+1 = (1, . . . , 1). The sensitive attributes z1, . . . , zN+n+1 ∈ [0, 1] are defined such that if i ≤ n,
zi = 0, and otherwise, zi = 1

2 .
• The input criteria t is the all-zeros vector (0, . . . , 0).
• The diversity constant is c = 1

2 .
• The symmetric difference bound is s = n+ k.

In Claims 1 and 2, we prove that the answer to the SCP given input ISCP is “yes” if and only if the answer to the HICP given
input IHICP is “yes”, and thus the reduction holds.

Claim 1. If the answer to the SCP given input ISCP is “yes”, then the answer to the HICP given input IHICP is “yes”.

Proof of Claim 1. Since the answer to the SCP is “yes”, there must be k set S`1 , . . . , S`k ∈ S such that
⋃k
j=1 S`j = [n]. Define

the new criteria t′ = (b′1, . . . , b
′
N ) such that b′i = 1 if i ∈ {`1, . . . , `k}, and otherwise b′i = 0. We claim that |Et∆Et′ | = s =

k + n and 1
|Et′ |

∑
(x,z)∈Et′

z ≥ c = 1
2 , and thus the answer to the HICP given input IHICP is “yes”.

First, we will characterize which examples fall in the set Et′ , which will allow us to show that |Et∆Et′ | = s = k + n. We
claim that for all xi such that i ≤ n, t′(xi) = 0, and thus (xi, zi) 6∈ Et′ . This is because there is some j ∈ [k] such that i ∈ S`j .
After all, S`1 , . . . , S`k is a set cover. By definition of b′1, . . . , b

′
N , we know that b′`j = 1, but by definition of xi, we know that

xi [`j ] = 0. Therefore, t′(xi) = 0 for all i ≤ n. Next, we claim that for all vectors xn+1, . . . ,xn+N , t′ (xn+i) = 0 if and
only if i ∈ {`1, . . . , `k}. After all, suppose i ∈ {`1, . . . , `k}. Then xn+i[i] = 0, but b′i = 1, which means that t′ (xn+i) = 0.
Next, suppose i 6∈ {`1, . . . , `k}. Then for all j ∈ {`1, . . . , `k}, xn+i[j] = 1 and b′j = 1, and for all j 6∈∈ {`1, . . . , `k},
xn+i[j] ∈ {0, 1} and b′j = 0. Therefore, t′(xn+i) = 1. Finally, it’s clear that the all-ones vector t′ (xN+n+1) = 1. In total, we
have that

Et′ = {(xn+i, zn+i) : i 6∈ {`1, . . . , `k}} ∪ {(xN+n+1, zN+n+1)} . (2)
Since Et = E, we have that Et∆Et′ = {(xi, zi) : i ≤ n} ∪ {(xn+i, zn+i) : i ∈ {`1, . . . , `k}}. Therefore, |Et∆Et′ | = s =
k + n.

Next, we claim that 1
|Et′ |

∑
(x,z)∈Et′

z ≥ c = 1
2 . This follows Equation (2) and the fact that zi = 1

2 for all i > n.
Therefore, the answer to the HICP given input IHICP is “yes”.



Claim 2. If the answer to the HICP given input IHICP is “yes”, then the answer to the SCP given input ISCP is “yes”.

Proof of Claim 2. Since the answer to the HICP is “yes”, there must be an alternative criteria t′ = (b′1, . . . , b
′
N ) such that

|Et∆Et′ | ≤ s = n+ k and 1
|Et′ |

∑
(x,z)∈Et′

z ≥ c = 1
2 . Since zi = 0 for all i ≤ n, it must be that (xi, zi) 6∈ Et′ for all i ≤ n.

Since E = Et, this means these n examples are elements of the symmetric difference Et∆Et′ , so there can only be at most k
other examples that fall in this set. In particular, there are at most k vectors xi ∈ {xn+1, . . . ,xn+N} such that t′(xi) = 0. Let
K be the set K = {i : b′i > 0}. We claim that if i ∈ K, then t′(xn+i) = 0. This is because xn+i[i] = 0. Therefore, the size of
K is bounded by the number of vectors xn+i such that t′(xn+i) = 0, which we know is at most k. In other words, |K| ≤ k.

Next, we claim that
⋃
i∈K Si = [n]. To see why this is, consider an arbitrary element j ∈ [n]. Since t′(xj) = 0, we

know there exists i ∈ K such that b′i > 0 and xj [i] = 0. After all, xj ∈ {0, 1}N , so the only other option is that for some
i ∈ K, b′i > 1. But this cannot be the case because if b′i > 1 for some i, then Et′ = ∅, which is impossible given that
|Et∆Et′ | ≤ n+ k < n+N + 1 = |Et| and |Et∆∅| = |Et|. Therefore, there exists i ∈ K such that b′i > 0 and xj [i] = 0. By
definition of xj , this means that j ∈ Si. Therefore,

⋃
i∈K Si = [n], so the answer to the SCP is “yes”.

The Standard Occupation Classification System

All jobs

Educational Instruction and Library Occupations

Postsecondary Teachers

Life Sciences Teachers

Agricultural Sciences Teachers Biological Science Teachers · · ·

Math and Computer Science Teachers

Math Teachers Computer Science Teachers

· · ·

· · ·

· · ·

Figure 5: A small subset of the Department of Labor’s Standard Occupational Classification System.

Proofs of diversity estimation guarantees
It is possible to provide sample complexity guarantees for any real-valued function class H using VC dimension, even though
VC dimension is a complexity measure that only applies to binary function classes. To derive these guarantees, it is sufficient
to bound the VC dimension of the class GH of below-the-graph indicator functions, defined as follows.

Definition 4 (Below-the-graph indicator functions). Let H be a class of functions mapping a domain A to [0, 1]. The class
GH = {gh : h ∈ H} of below-the-graph indicator functions is defined such that gh : A × [0, 1] → {0, 1} and gh(a, y) =
sign(h(a)− y).

Lemmas 1 and 2 demonstrate how the VC dimension of the class of below-the-graph indicator functions can be used to
provide sample complexity guarantees for real-valued function classes.

Lemma 1 (Theorems 18.4 and 19.7 of (Anthony and Bartlett, 2009)). LetH be a class of functions mapping an abstract domain
A to [0, 1] and let GH be the class of below-the-graph indicator functions. Then for any α, β, δ ∈ (0, 1) and any distribution
µ′ over A, with probability at least 1 − δ over the draw of a1, . . . , aN ∼ µ′, for all h ∈ H, (1 − α)Ea∼µ′ [h(a)] − β <
1
N

∑N
i=1 h(ai) < (1 + α)Ea∼µ′ [h(a)] + β when N ≥ N0 ∈ O

(
1
αβ

(
VCdim (GH) log 1

β + log 1
δ

))
.

Lemma 2 (Pollard (1984); Dudley (1967)). Let H be a class of functions mapping an abstract domain A to [0, 1] and let
GH be the class of below-the-graph indicator functions. For any ε, δ ∈ (0, 1) and any distribution µ′ over A, with probability

at least 1 − δ over the draw of a1, . . . , aN ∼ µ′, for any h ∈ H,
∣∣∣ 1
N

∑N
i=1 h(ai)− Ea∼µ′ [h(a)]

∣∣∣ ≤ ε when N ≥ N0 ∈
Θ
(

1
ε2

(
VCdim (GH) + log 1

δ

))
.

Proof of Theorem 1
In this section, we prove Theorem 1. To do so, we use the following helpful lemma.



Lemma 3. Let
{
E(1), . . . , E(M)

}
be a set of elements in (X × Z)m and let v = VCdim(T ). Then∣∣∣∣∣∣∣


 fm

(
t, E(1)

)
...

fm
(
t, E(M)

)
 : t ∈ T


∣∣∣∣∣∣∣ ≤ (mM + 1)v.

Proof. Let S ′ = {x1, . . . , xMm} be the set of all observable attributes x such that (x, z) ∈ E(i) for some E(i) and some
z ∈ [0, 1]. Classic results from learning theory (Sauer, 1972) allow us to bound the number of ways criteria in T can label the
set S ′. In particular, ∣∣∣∣∣∣∣


 t (x1)

...
t (xmM )

 : t ∈ T


∣∣∣∣∣∣∣ ≤ (mM + 1)v.

Suppose t and t′ are two criteria such that t (xi) = t′ (xi) for all i ∈ [mM ]. We claim that fm
(
t, E(i)

)
= fm

(
t′, E(i)

)
for

all i ∈ [M ]. For a contradiction, suppose

fm

(
t, E(i)

)
=

1∣∣∣E(i)
t

∣∣∣
∑

(x,z)∈E(i)
t

z

6= 1∣∣∣E(i)
t′

∣∣∣
∑

(x,z)∈E(i)

t′

z = fm

(
t′, E(i)

)

for some i ∈ [M ]. This means that E(i)
t =

{
(x, z) : (x, z) ∈ E(i), t(x) = 1

}
6=
{

(x, z) : (x, z) ∈ E(i), t′(x) = 1
}

= E
(i)
t′ .

Therefore, there is some example (x, z) ∈ E(i) such that t(x) 6= t′(x), which is a contradiction, so the claim holds.

Theorem 1. For any ε ∈ (0, 1/2) and δ ∈ (0, 1), with probability 1 − δ over the draw E = {(x1, z1), . . . , (xN , zN )} ∼
µN , for all t ∈ T such that Pr(x,z)[t(x) = 1] ≥ c,

∣∣fm(t, E)− E(x,z)∼µ[z | t(x) = 1]
∣∣ ≤ ε when N ≥ N0 ∈

O
(

1
cε2

(
VCdim(T ) log 1

ε + log 1
δ

))
.

Using Lemma 1, we show that the numerator and the denominator of fm(t, E) =

∑N
i=1 zit(xi)∑N
i=1 t(xi)

are concentrated around

their means for all t ∈ T .

Claim 3. For any ε ∈ (0, 1) and δ ∈ (0, 1), with probability at least 1− δ over the draw of (x1, z1), . . . , (xN , zN ) ∼ µ, for all
t ∈ T such that Pr(x,z)[t(x) = 1] ≥ c, we have

(1− ε) Pr
(x,z)∼µ

[t(x) = 1] ≤ 1

N

N∑
i=1

t(xi) ≤ (1 + ε) Pr
(x,z)∼µ

[t(x) = 1].

when N ≥ N0 ∈ O
(

1
cε2

(
VCdim(T ) log 1

ε + log 1
δ

))
.

Proof. This follows immediately from Lemma 1 by setting α = ε
2 and β = cε

2 .

Claim 4. For any ε ∈ (0, 1) and δ ∈ (0, 1), with probability at least 1 − δ over the choice of (x1, z1), . . . , (xN , zN ) ∼ µ, for
all t ∈ T ,

(1− ε) E(x,z)∼µ[zt(x)]− cε < 1

N

N∑
i=1

zit(xi)

and

(1 + ε) E(x,z)∼µ[zt(x)] + cε >
1

N

N∑
i=1

zit(xi),

when N ≥ N0 ∈ O
(

1
cε2

(
VCdim(T ) log 1

ε + log 1
δ

))
.



Proof. Let α = ε
2 and β = cε

2 . Using Lemma 1, it suffices to show that the VC dimension of class of functions

G = {gt : (x, z, y) 7→ sign(zt(x)− y)}t∈T

is at most VCdim(T ). To do this, we show that if there is a set of examples (x1, z1), . . . , (xM , zM ), and threshold values
y1, . . . , yM , such that 

 sign(z1 · t(x1)− y1)
...

sign(zM · t(xm)− yM )

 : t ∈ T

 = {0, 1}M , (3)

then M ≤ VCdim(T ).
Consider such a set of M examples and thresholds that satisfy Equation (3). Note that for this to be true, it must be that

yi < zi for all i ∈ [M ]. Under such conditions, sign(zi · t(xi)− yi) = t(xi). Therefore,
 t(x1)

...
t(xM )

 : t ∈ T

 = {0, 1}M ,

as well. This implies that T shatters the set of M examples (x1, . . . , xM ), hence, M ≤ VCdim(T ). Therefore, VCdim(G) ≤
VCdim(T ).

We now prove Theorem 1.

Proof of Theorem 1. First, note that

E(x,z)∼µ[zt(x)]

E(x,z)∼µ[t(x)]
=

E[zt(x)]

Pr[t(x) = 1]

=
E
[
z1{t(x)=1}

]
Pr[t(x) = 1]

=
E [z | t(x) = 1] · Pr[t(x) = 1]

Pr[t(x) = 1]

= E [z | t(x) = 1] .

Next, by Claims 3 and 4, for N ≥ N0,∑N
i=1 zit(xi)∑N
i=1 t(xi)

≤ (1 + ε/4)E[zt(x)] + cε/4

(1− ε/4)E[t(x)]

=
(1 + ε/4)E[zt(x)]

(1− ε/4)E[t(x)]
+

cε/4

(1− ε/4)E[t(x)]

≤ 1 + ε/4

1− ε/4
· E[zt(x)]

E[t(x)]
+

cε/4

(1− ε/4)c
(E[t(x)] ≥ c)

≤
(

1 +
ε/2

1− ε/4

)
E[zt(x)]

E[t(x)]
+

ε/4

1− ε/4

≤ E[zt(x)]

E[t(x)]
+
ε/2 + ε/4

1− ε/4

(
E[zt(x)]

E[t(x)]
≤ 1

)
≤ E[zt(x)]

E[t(x)]
+
ε/2 + ε/4

1− 1/8

(
ε ≤ 1

2

)
<

E[zt(x)]

E[t(x)]
+ ε

= E [z | t(x) = 1] + ε.



From the other direction,∑N
i=1 zit(xi)∑N
i=1 t(xi)

≥ (1− ε/4)E[zt(x)]− cε/4
(1 + ε/4)E[t(x)]

=
(1− ε/4)E[zt(x)]

(1 + ε/4)E[t(x)]
− cε/4

(1 + ε/4)E[t(x)]

≥ 1− ε/4
1 + ε/4

· E[zt(x)]

E[t(x)]
− cε/4

(1 + ε/4)c
(E[t(x)] ≥ c)

≥
(

1− ε/2

1 + ε/4

)
E[zt(x)]

E[t(x)]
− ε/4

1 + ε/4

≥ E[zt(x)]

E[t(x)]
− ε/2 + ε/4

1 + ε/4

(
E[zt(x)]

E[t(x)]
≤ 1

)
≥ E[zt(x)]

E[t(x)]
− ε/2 + ε/4

1 + 1/8

(
ε ≤ 1

2

)
>

E[zt(x)]

E[t(x)]
− ε

= E [z | t(x) = 1]− ε.

Therefore, the theorem holds.

Proof of Theorem 2
We now prove Theorem 2, which we restate below.
Theorem 2. For any ε, δ ∈ (0, 1),N ≥ N0 ∈ Θ

(
1
ε2

(
VCdim(T ) log (mVCdim(T )) + log 1

δ

))
samples are sufficient to ensure

that with probability 1− δ over the draw of E(1), . . . , E(N) ∼ µ̄, for all t ∈ T ,
∣∣∣ 1
N

∑N
i=1 fm

(
t, E(i)

)
− EE∼µ̄[fm(t, E)]

∣∣∣ ≤ ε.
Proof. By Lemma 2, we only need to bound the VC dimension of the class of below-the-graph indicator functions corre-
sponding to the set of functions fm(t, ·), which take as input any set E ∈ (X × Z)m of m examples and return the di-
versity measurement fm(t, E). We use the notation D = {fm(t, ·) | t ∈ T} to denote this set of real-valued functions and
GD = {gt : (E, y) 7→ sign(fm(t, E) − y) | t ∈ T} to denote the corresponding set of below-the-graph indicator functions.
Indeed, in order to prove this theorem, it is enough to prove that VCdim (GD) = O (VCdim(T ) log (mVCdim(T ))) .

Suppose VCdim (GD) = M . This means that there exists a set
{(
E(1), y(1)

)
, . . . ,

(
E(M), y(M)

)}
⊂ (X × Z)m × [0, 1]

such that for all binary vectors b ∈ {0, 1}M , there exists a criterion tb ∈ T such that sign
(
fm
(
tb, E

(i)
)
− y(i)

)
= b[i] for all

i ∈ [M ].
Let S ′ = {x1, . . . , xMm} be the set of all observable attributes x such that (x, z) ∈ E(i) for some E(i) and some

z ∈ [0, 1]. Let v = VCdim(T ). Classic results from learning theory (Sauer, 1972) allow us to bound the number of
ways criteria in T can label the set S ′. In particular, |{(t (x1) , . . . , t (xmM )) : t ∈ T}| ≤ (mM + 1)v. This fact al-
lows us to bound the number of ways functions in D can label E(1), . . . , E(M). Specifically, in Lemma 3, we prove that∣∣{(fm (t, E(1)

)
, . . . , fm

(
t, E(M)

))
: t ∈ T

}∣∣ ≤ (mM + 1)v. Thus,

2M =

∣∣∣∣∣∣∣

 sign

(
fm
(
t, E(1)

)
− y(1)

)
...

sign
(
fm
(
t, E(M)

)
− y(M)

)
 : t ∈ T


∣∣∣∣∣∣∣ ≤ (mM + 1)v.

This means that M = O(v log(vm)), and since M = VCdim (GD) and v = VCdim(T ), we know that

VCdim (GD) = O (VCdim(T ) log (mVCdim(T ))) ,

as desired.


