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Abstract
Discrimination-aware models in machine learning are
a recent topic of study that aim at minimizing the ad-
verse impact of machine learning decisions for cer-
tain groups of people due to ethical and legal implica-
tions. We propose a benchmark framework for assess-
ing discrimination-aware models. Our framework con-
sists of systematically generated biased datasets that are
similar to real world data, created by a Bayesian net-
work approach. Experimental results show that we can
assess the quality of techniques through known metrics
of discrimination, and our framework is flexible and can
be extended to most real datasets and fairness measures
to support a diversity of assessments.

1 Introduction
Discrimination-aware learning is a topic of research that
aims at minimizing the impact of bias against certain groups
due to ethical reasons and legal implications. Given a labeled
dataset whose records represent individuals, let its attributes
be divided into non-protected and protected attributes, such
as race and gender. The problem consists of building a clas-
sifier that takes the non-protected attributes of an individual
and maps them to a class label, so that the classifier has min-
imum discrimination and maximum accuracy.

There are several recent works that tackle the issue of
discrimination-aware learning; see for example the survey
by (Hajian, Bonchi, and Castillo 2016) on fairness in ma-
chine learning. However, it is interesting to note that there is
no consensus on the best technique for a given application
scenario, since it also depends on the level of discrimina-
tion that is inherent to the dataset being targeted. The recent
study by (Kleinberg, Mullainathan, and Raghavan 2016) dis-
cusses the impossibility of a classifier to satisfy multiple no-
tions of fairness. This is one of the reasons why researchers
have put their efforts on minimizing the effect of biased data
on the predictions. We argue that an effective strategy to
assess discrimination-aware learning models is by running
them on scenarios where the discrimination-related param-
eters differ, so that we can observe how well the models
behave. The main contribution of this work is a framework
for comparing discrimination-aware learning models. To the
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best of our knowledge, there is no other such benchmark
framework in the literature. Our framework comprises sys-
tematically generated biased datasets that are sampled from
Bayesian networks learned from real world data. Our main
concern is to explore alternative discrimination scenarios,
that is, we want to learn from data representing different
levels of bias for the purpose of analyzing the behavior of
techniques when bias levels differ. This work focuses on
two metrics for assessing discrimination: disparate impact
and disparate mistreatment (Zafar et al. 2017). However, our
approach may be extended to other metrics (see (Zliobaite
2017)) as well.

2 Related work
Most of the studies in this area may be divided into two
groups (Hajian, Bonchi, and Castillo 2016): discrimination
discovery, which focuses on studying metrics and identify-
ing how much discrimination there is in a dataset, and dis-
crimination prevention, focused on building classification
models that are less likely to produce discriminatory results.

For discrimination discovery there are a number of works
that aim at identifying patterns of discrimination in data
(Pedreschi, Ruggieri, and Turini 2008; Ruggieri, Pedreschi,
and Turini 2010). Some of these works propose and study
metrics to quantify the amount of discrimination. Zliobaite
(Zliobaite 2017) surveys several such metrics; she defines
the mean difference as the most commonly used metric
in early works, also called slifd (Pedreschi, Ruggieri, and
Turini 2009) or disparate impact. Zafar et al. (Zafar et al.
2017) propose a metric called disparate mistreatment, which
measures the difference between misclassifications.

Discrimination prevention methods can be divided into
three groups: pre-processing, in-processing and post-
processing techniques (Hajian, Bonchi, and Castillo 2016).
We focus more on Pre-processing techniques (Kamiran and
Calders 2011; Feldman et al. 2015), since they modify the
training set in order to make it as discrimination-free as
possible, so that a classifier becomes less prone to exhibit
bias. In-processing techniques (Calders and Verwer 2010;
Kamiran, Calders, and Pechenizkiy 2010; Zafar et al. 2017)
work by changing the classifier to produce less discriminat-
ing models, whereas Post-processing techniques (Hajian et
al. 2014) change the outcome of classification models.

Regarding discrimination-related assessment, several pre-



vious works on discrimination-aware learning generate syn-
thetic data for evaluation (Hardt, Price, and Srebro 2016;
Zliobaite, Kamiran, and Calders 2011). However, they create
simple models with a few variables and their conditional de-
pendencies, containing protected and non-protected artificial
attributes and a binary class. In contrast, the main difference
in our approach is that we generate biased data sampled from
Bayesian networks learned from real world data, instead of
purely synthetic data.

There are works that employ Bayesian networks to deal
with discrimination discovery and prevention task. Bonchi
et al. (2017) address the problem of learning probabilistic
causal structures of discrimination from datasets. Mancuhan
et al. (2014) use Bayesian networks for the task of bias pre-
vention. Our work learns these structures, identifies discrim-
ination patterns and uses them to sample data at different
levels of bias. While previous approaches focused on dis-
covering and mitigating discrimination, we employ sampled
data from Bayesian networks in order to evaluate the quality
of discrimination prevention techniques.

3 Definitions
A discrimination-aware learning model usually exploits the
trade-off between accuracy and discrimination. The task is
usually framed as a binary classification problem, where not
only the accuracy should be maximized, but also discrim-
ination has to be minimized. The classification score is de-
fined according to the probabilities of outcomes for different
groups of individuals. These groups are sets of individuals
who share the same value of a specific attribute and, by con-
trasting their outcomes, we assess the model discrimination.

Formally, we are given a labeled dataset D where each
record represents an individual. For each individual there
are two sets of attributes X = {x1, ..., xn} and S =
{s1, ..., sm}. We call the set X the legally usable attributes,
or non-protected attributes, which, in theory, may be used in
decision making without any legal implications, e.g., annual
income. We call the set S the non-legally usable attributes,
or protected attributes. We are not supposed to use any at-
tribute from S in a decision making process because they are
protected by law, for instance, race, sex.

The class label y ∈ {+,−} is the variable the model tries
to predict for each individual. A positive class label y = +
(also denoted y+) expresses a favorable outcome for the in-
dividual; alternatively, a negative class label y = − (also
denoted y−) expresses an unfavorable outcome. An example
is in credit scoring, where a bank wants to decide whether a
customer has good credit score or not. A good credit score
is represented by y = +, while a bad credit score is repre-
sented by y = −.

In order to measure discrimination with respect to a pro-
tected attribute s for individuals that belong to a group g,
we quantify the difference between probabilities of positive
outcomes for individuals that belong to g, that is, s = g, and
those who don’t belong to g, that is, s 6= g or s = ḡ. We
assume here that individuals belonging to g usually suffer
from discriminatory conditions, and are called the deprived
group. Individuals not belonging to g usually have an unfair
advantage in models, and they are called favored group.

Definition 3.1. Let D be a dataset with labeled binary
classes y ∈ {+,−}, a protected attribute s, an attribute
value g for attribute s that defines individuals belonging to
a group and ḡ that defines individuals not belonging to the
same group. The discrimination discD,s,g in D with respect
to the attribute s for individuals from g is defined by the fol-
lowing equation:

discD,s,g = P (y+|s = ḡ)− P (y+|s = g) (1)

That is, the difference between the probability of posi-
tive class for the favored (ḡ) versus the disfavored group
(g). For example, members of the favored group may have
a higher probability of a good credit score. Definition 3.1
is widely used for measuring discrimination (Kamiran and
Calders 2011; Hajian et al. 2014) and it is often referred to
as disparate impact.

Another way of measuring discrimination is through the
two metrics presented in Zafar et al. (Zafar et al. 2017) as
disparate mistreatment. These are the metrics for misclas-
sification that take into account the difference between false-
positive and false-negative rates for individuals of different
groups, defined as follows:
Definition 3.2. Let a classifier f assign for every record in
D a class label ŷ. The disparate mistreatment of the classifier
f in the dataset D with respect to the attribute s between the
groups g and ḡ is defined as:

Dfp(D,s,g,f) = P (ŷ+|s = ḡ, y−)− P (ŷ+|s = g, y−) (2)

Dfn(D,s,g,f) = P (ŷ−|s = g, y+)− P (ŷ−|s = ḡ, y+) (3)

The favored group ḡ may have a higher false-positive
rate (called overestimation) and a lower false negative rate
(called underestimation) compared to the disfavored group
g. These metrics seek to measure the extent of this problem
for a given classifier f .

4 Benchmark Methodology
Our benchmark framework comprises systematically gener-
ated biased datasets that are derived from Bayesian networks
learned from real-world data. We learn an approximate net-
work structure that describes a dataset, which in turn de-
pends on the conditional probabilities between the attributes.
Modified Bayesian networks with different degrees of bias
are used to generate new datasets that are used for evaluating
discrimination-aware models.

4.1 Estimating Bayesian Networks
A Bayesian network is a probabilistic graphical model that
maps conditional dependencies of random variables into a
directed acyclic graph. We use an estimated Bayesian net-
work to generate synthetic data, which allow us to quantify
how much influence a protected attribute has on the outcome
of a classification model.

To learn the structure of a Bayesian network in order to
study causal relationships between the variables, we use the
popular R library bnlearn (Margaritis 2003). Knowing the



Bayesian network that represents a given data allows us to
reproduce the characteristics inherent to the original data
and to also adjust specific parameters to generate diverse
scenarios. By learning these structures we can modify any
node’s conditional probabilities and are thus able to calibrate
the bias of an outcome with respect to a protected attribute.
Currently, we imply two methods for learning Bayesian Net-
works, Hill-Climbing greedy search and Tabu Search algo-
rithm, both described in (Margaritis 2003).

4.2 Modifying probabilities
Once we have learned a Bayesian network that represents
the data, we can change the conditional probabilities of spe-
cific nodes. By doing this, we create a scenario where some
of the nodes have different degrees of influence on other
nodes. The modification is performed by selecting a specific
attribute of our interest, that is, a protected attribute s. This
attribute is represented by a node and it will have a direct or
indirect influence on the outcome. The influence is observed
in the conditional probability table of the outcome node.

Suppose we have a target attribute s ∈ {ḡ, g} and the out-
come y ∈ {−,+}. Recall that g represents a deprived group
and ḡ represents a favored group. We modify the Bayesian
network by changing values in the probability table. Let
0 ≤ β ≤ 1 be the level of artificial bias we want to in-
sert on this node. The new probability P ′(y = +|s = g) is
defined as:

P ′(y = +|s = g) = P (y = +|s = g)(1− β) (4)

We only change the probabilities for the deprived group
(s = g) because, if we change the conditional probabili-
ties of the other group, we are inserting twice the amount
of bias. Our methodology consists of generating n Bayesian
networks for each dataset. Each Bayesian network is gener-
ated with an increasing β (from 0.0 to 1.0).

Table 1: Toy conditional probability table

s = ḡ s = g

P (y = −|s) 0.63 0.80→ 0.90
P (y = +|s) 0.37 0.20→ 0.10

Table 1 represents a toy example of conditional probabil-
ities of the outcome given a variable s. Using the disparate
impact score we can see that the discrimination against the
group g is 0.17 since P (y+|ḡ)− P (y+|g) = 0.37− 0.20 =
0.17. Suppose we want to insert a bias level β of 0.5. In or-
der to do this, we change the probability under the column
s = g, as shown in Table 1. Now we can observe that the dis-
crimination against the group g is 0.27 (0.37− 0.10), which
means that we have increased the resulting discrimination.

4.3 Sampling & Evaluation
After learning a Bayesian network with the conditional
probabilities on its nodes, we can then sample data from it.
Since we have the frequency of each attribute in the dataset,
we can sample this structure, so that samples remain similar

to the real data regarding the probability of each individual
attribute. A sample consists of randomly generated observa-
tions, where each the attribute values in an observation are
generated according the probability table learned from the
original data. For each bias level introduced, we generate
random samples that form the corresponding biased training
dataset. These systematically biased datasets are used for
evaluating discrimination models and metrics. Those tech-
niques either pre-process the input data and generate a new
data or use the input data without any pre-processing and
provide a discrimination-aware classification model.

5 Experiments
We compare well-known discrimination-aware techniques
by testing them on the systematically biased datasets.
We mainly test pre-processing techniques and some in-
processing techniques. When a pre-processing technique is
employed, it outputs a modified dataset that is used by con-
ventional classification models. The test set is the original
real data that was used to generate the Bayesian networks.
Evaluation is performed in two different ways. First we use
the most common way to evaluate a discrimination-aware
model, that is, by comparing the discrimination of the pre-
diction to the accuracy on the test set. The second way con-
sists of measuring overestimation (eq. (2)) and underestima-
tion (eq. (3)) of the resulting predictions.

5.1 Discrimination-aware Techniques
The techniques that we compared are mainly pre-processing
ones that aim to produce datasets that are supposed to gen-
erate less biased classifiers.

Baseline: It consists of removing the protected attribute
from the training set. It has been argued that such re-
moval may even increase discrimination (Pedreschi, Rug-
gieri, and Turini 2008). This is due to the fact that some of
the attributes may describe the protected one, for example,
the neighborhood information may carry racial information
about individuals. This problem is known as redlining.

Calders et al. (Calders and Verwer 2010): propose sev-
eral pre-processing approaches for dealing with the problem
of discrimination aware learning. These are:

• Massaging changes the class label of individuals in order
to balance positive outcomes between groups. Individuals
of the deprived group from the negative class are reas-
signed to the positive class, and individuals of the favored
group having a positive class are reassigned to the neg-
ative class. Instances are selected for class reassignment
based on a score learned by a ranker.

• Re-weighting assigns higher weights to individuals of the
deprived group that have a positive class label and to in-
dividuals of the favored group that have a negative class
label.

• Uniform Sampling applies the following rule on a ran-
domly chosen instance: if the instance is from the de-
prived group with negative class, it is removed, otherwise,
if it is from the positive class, it is duplicated. Likewise, if



the instance is of the favored group with a positive class
is removed, but if it has a negative class it is duplicated.

• Preferential Sampling chooses instances based on a
ranker like in the Massaging technique. The change rules
are the same as in uniform sampling.

Black Box Auditing (Auditor) Black Box Auditing1 is an
implementation of Gradient Feature Auditing (GFA) intro-
duced in (Adler et al. 2016). This technique works by repair-
ing the dataset via a pre-processing technique, which means
that it changes attribute labels. The resulting repaired dataset
is expected to have lower discrimination. We run the data re-
pairer described by (Feldman et al. 2015) at the repair levels
of 0.25, 0.50 and 0.75.

5.2 Datasets
We test on the following original real-world datasets. The
Adult dataset2, also known as Census Income, is a widely
used dataset in previous discrimination-aware learning stud-
ies. The task is to predict whether an individual has a yearly
income greater than $50K or not (i.e., high vs. low income).
It has 48,842 instances with 14 attributes. The protected at-
tribute is sex and the original dataset has an inherent dis-
parate impact against women (equal to 0.19). For generating
biased data, we increase the influence of the feature relation-
ship on the outcome, thus making it less likely that wives
have high income, thus increasing the bias against women.
The Pro Publica COMPAS dataset3 records racial bias on
recidivism scores. The data contains information from de-
fendants such as race, age, criminal history and whether the
defendant had committed a crime within a two-year win-
dow. It has 6,150 instances with 13 attributes. The sensi-
tive attribute is race, which can be either “Caucasian” or
“African-American”. We modified the influence of the vari-
able race on the outcome for generating biased data. Dutch
census (Calders and Verwer 2010) is also a demographic
census. We use it to make predictions of whether an individ-
ual has a “high level” occupation or not. This dataset has 11
attributes and we define sex as the protected attribute.

5.3 Experimental setup
The experiments are conducted by evaluating the various
discrimination-aware techniques on our set of systematically
biased datasets generated from the real-world data men-
tioned above. This set consists of 4 training datasets with in-
creasing levels of artificial bias (β) against individuals of the
defined deprived group. For the classifier, we use the Weka
implementation of the C4.5 decision tree (Hall et al. 2009).
We reproduced the experimental setup described by the au-
thors of the techniques and used default parameters (Lich-
man 2013; Zliobaite, Kamiran, and Calders 2011). There-
after, we measure the accuracy and discrimination observed
when the original data is used as the testing data. Note that
we refer to disparate impact as discrimination (eq. (1)), and

1https://github.com/algofairness/BlackBoxAuditing
2https://archive.ics.uci.edu/ml/datasets/adult
3https://github.com/propublica/compas-analysis

measure disparate mistreatment via overestimation and un-
derestimation (eq. (2) and eq. (3)).

6 Results and discussion
In this section we present the results of employing our
framework to assess several techniques. Every experiment
was run 30 times. We computed the confidence intervals as
well as the variances for each set of experiments and most
of them ranged between 90% and 95%.

6.1 Discrimination vs. Accuracy
Table 2 shows the Discrimination versus Accuracy on each
dataset when we only remove the protected attribute. We
perform this experiment for a couple of reasons. The first
one is to make sure that removing the protected attribute
does not reduce the resulting discrimination in the classifi-
cation task. The second reason is to define upper bounds for
both discrimination and accuracy. That is, the discrimina-
tion without any technique being employed must be higher
than when some technique is used, otherwise the use of this
anti-discrimination technique would be of no use. It is also
expected that the accuracy will be higher than the resulting
accuracy when a discrimination-aware technique is used be-
cause the technique must lower the discrimination at the cost
of accuracy.

Table 2: Discrimination and Accuracy on biased datasets
from Adult, COMPAS and Dutch data (classifier does not
use the protected attribute)

β
Dataset Adult COMPAS Dutch

Disc. Acc. Disc. Acc. Disc. Acc.

0.00 0.162 0.845 0.121 0.878 0.322 0.832
0.25 0.280 0.829 0.121 0.880 0.358 0.831
0.50 0.581 0.729 0.123 0.879 0.393 0.827
0.75 0.592 0.726 0.120 0.878 0.479 0.805
1.00 0.602 0.723 0.124 0.880 0.677 0.729

We can observe in Table 2 that, as we increase β, the
discrimination on the Adult census increases and the accu-
racy decreases, which means that highly biased data is worse
for the performance of a traditional classifier like C4.5. The
COMPAS case shows better performance as it does not in-
crease the discrimination as we raise β. In COMPAS the re-
sulting decision trees for each β are similar, which explains
its behavior. Dutch census is similar to Adult. As expected,
removing the protected attribute contributes poorly in reduc-
ing discrimination because other attributes are highly corre-
lated with the protected one.

Data pre-processing techniques Table 3 shows Discrimi-
nation vs. Accuracy results for different pre-processing tech-
niques. Recall that we expect the discrimination and accu-
racy upper bounds to be preserved. We then highlight sce-
narios where the accuracy increased instead of decreasing.

We can see that in Table 3, on Adult, every technique
except Massaging increases discrimination when using a
more biased training set. Re-weighting and Uniform Sam-
pling behave very similarly (this behavior is held true on



Table 3: Discrimination and Accuracy for data pre-
processing techniques trained on artificially generated
datasets learned from adult census.

β
Tech. Massaging Reweighting Unif. Sampling Pref. Sampling

Disc. Acc. Disc. Acc. Disc. Acc. Disc. Acc.

0.00 0.046 0.830 0.111 0.842 0.112 0.842 -0.006 0.822
0.25 0.009 0.816 0.140 0.840 0.139 0.838 -0.034 0.812

Adult 0.50 0.095 0.778 0.260 0.802 0.257 0.799 0.044 0.794
0.75 0.082 0.718 0.479 0.710 0.480 0.710 0.142 0.756
1.00 0.003 0.676 0.473 0.690 0.474 0.690 0.416 0.673
0.00 0.095 0.879 0.104 0.876 0.110 0.877 0.076 0.872
0.25 0.084 0.879 0.103 0.876 0.113 0.879 0.067 0.871

COMPAS 0.50 0.070 0.875 0.102 0.875 0.111 0.878 0.054 0.870
0.75 0.054 0.872 0.098 0.874 0.104 0.877 0.044 0.866
1.00 0.057 0.871 0.107 0.877 0.108 0.878 0.045 0.866
0.00 0.101 0.791 0.153 0.818 0.159 0.817 0.066 0.790
0.25 0.013 0.768 0.154 0.818 0.166 0.818 0.018 0.774

Dutch 0.50 -0.052 0.748 0.150 0.816 0.161 0.816 -0.029 0.760
0.75 -0.119 0.721 0.157 0.816 0.159 0.813 -0.062 0.749
1.00 -0.182 0.693 0.483 0.720 - - - -

other datasets). Preferential sampling has a steady decrease
in accuracy and increase in discrimination, but its result for
100% bias is quite different. We hypothesize that, when the
dataset becomes fully biased, its results are not really sig-
nificant anymore, but are included for sake of providing a
bound.
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Figure 1: Discrimination vs Accuracy for data Massaging
technique on Adult data

The most intriguing result is for the Massaging technique.
Table 3 and Figure 1 show that it has lower discrimination
for lower and higher β, but when we introduce moderate
β it increases the resulting discrimination. In Figure 1, col-
ored dots represent a set of 30 artificial datasets each and
their colors vary according to β. Massaging works by defin-
ing a decision boundary between positive and negative out-
comes through a Naive Bayes classifier, then it selects points
from the dataset and changes their labels in order to balance
the ratio of positives and negatives between the two classes
of the sensitive attribute. Massaging works by changing la-
bels, thus forcing the deprived group to have more positive
outcomes and the favored group to have more negative out-
comes. This is possibly the reason Massaging causes nega-
tive discrimination. We can observe that the results for the
various techniques on COMPAS were also consistent with
previous findings. Massaging and Preferential Sampling per-
formed better in terms of lowering discrimination. Neverthe-
less, the highlighted scenarios where the accuracy increased
suggests that data manipulation might actually improve both
accuracy and discrimination on specific scenarios. It can be

noticed on Dutch that Massaging and Preferential Sampling
behave similarly, but the former has more spread values,
which means that Preferential Sampling is more stable when
dealing with this dataset. Re-weighting and Uniform Sam-
pling, except on higher β, keep the discrimination and ac-
curacy around the same level. Notice that we couldn’t run
Uniform or Preferential Sampling for higher β, since those
techniques don’t work well on very imbalanced scenarios.

Table 4: Discrimination and Accuracy for Auditor in-
processing technique.

β
Tech Repair 0.25 Repair 0.50 Repair 0.75

Disc. Acc. Disc. Acc. Disc. Acc.

0.00 0.149 0.844 0.064 0.818 0.039 0.805
0.25 0.197 0.841 0.110 0.827 0.034 0.801

Adult 0.50 0.492 0.768 0.242 0.828 0.031 0.796
0.75 0.597 0.725 0.592 0.726 0.034 0.795
1.00 0.605 0.723 0.605 0.723 0.576 0.728
0.00 0.121 0.879 0.123 0.879 0.122 0.880
0.25 0.127 0.880 0.125 0.879 0.127 0.880

COMPAS 0.50 0.124 0.879 0.129 0.880 0.127 0.879
0.75 0.124 0.879 0.128 0.879 0.130 0.878
1.00 0.125 0.879 0.129 0.879 0.129 0.877
0.00 0.270 0.829 0.224 0.825 0.161 0.815
0.25 0.270 0.831 0.211 0.824 0.154 0.814

Dutch 0.50 0.304 0.829 0.224 0.825 0.150 0.811
0.75 0.390 0.806 0.295 0.798 0.143 0.798
1.00 0.586 0.730 0.468 0.717 0.212 0.619

Auditor’s technique Table 4 presents results for Auditor
at repair levels of 0.25, 0.50 and 0.75. On Adult, we see it
works well for lower β, but it performs poorly in more bi-
ased scenarios. It is worth noting that scenarios with very
high discrimination are less realistic, which means that Au-
ditor performance may be considered decent because it has
minimal losses with respect to accuracy. When the repair
level is set to 0.75, Auditor keeps the accuracy and discrim-
ination at the same levels for every β with low deviation,
except when maximum bias is inserted. On COMPAS Au-
ditor performed similarly for each one of the repairing lev-
els, but didn’t quite remove the discrimination. The consis-
tency of the results is also demonstrated by the similarity of
the decision trees generated by the C4.5 in every repairing
level. On Dutch census scenario, Auditor kept the accuracy
around the 80%, but it didn’t prevent the discrimination, and
pre-processing techniques performed better. It maintained
the best accuracy on overall for this scenario though. It can
be observed that the 0.75 repair level performs slighly bet-
ter than repair level 0.25 and 0.50. The highlighted numbers
suggest that the Auditor could improve the accuracy in some
cases. However, this improvement is not statistically signif-
icant, and, more importantly, there are cases where the dis-
crimination increases.

6.2 Overestimation vs. Underestimation
Table 5 shows results on Overestimation and Underestima-
tion for each dataset when no technique is applied. Again, it
is important to consider these values as upper bounds, which
means that the objective of each techniques is to reduce these



Table 5: Overestimation and Underestimation for Adult,
COMPAS and Dutch (classifier does not use the protected
attribute).

β
Dataset Adult COMPAS Dutch

Over. Under. Over. Under. Over. Under.

0.00 0.065 0.105 0.012 0.046 0.194 0.072
0.25 0.154 0.399 0.015 0.044 0.239 0.108
0.50 0.471 0.712 0.015 0.047 0.268 0.162
0.75 0.480 0.745 0.013 0.043 0.312 0.346
1.00 0.480 0.831 0.014 0.049 0.356 0.870

(absolute) values. We can see that Adult and Dutch have
high Overestimation and Underestimation at higher values
of β. Curiously, COMPAS keeps the values close. This sug-
gests that on COMPAS higher β may have little influence on
the resulting Overestimation and Underestimation, which is
also explained by the fact that the decision trees generated
by the classifier are similar no matter the β.

Table 6: Overestimation and Underestimation for data pre-
processing techniques.

β
Tech. Massaging Reweighting Unif. Sampling Pref. Sampling

Over. Under. Over. Under. Over. Under. Over. Under.

0.00 -0.025 -0.217 0.030 -0.063 0.029 -0.062 -0.051 -0.324
0.25 -0.062 -0.269 0.051 0.012 0.045 0.012 -0.084 -0.353

Adult 0.50 0.011 -0.130 0.154 0.196 0.151 0.198 -0.023 -0.236
0.75 0.005 -0.111 0.384 0.470 0.383 0.476 0.074 -0.124
1.00 -0.086 -0.070 0.351 0.706 0.355 0.709 0.298 0.644
0.00 -0.017 0.021 -0.000 0.026 0.006 0.036 -0.031 0.003
0.25 -0.024 0.006 -0.000 0.023 0.008 0.032 -0.038 -0.008

COMPAS 0.50 -0.031 -0.012 -0.001 0.024 0.006 0.030 -0.044 -0.026
0.75 -0.043 -0.031 -0.005 0.020 0.002 0.028 -0.051 -0.039
1.00 -0.034 -0.032 0.001 0.030 0.006 0.031 -0.045 -0.040
0.00 -0.065 -0.096 0.014 -0.095 0.023 -0.087 -0.091 -0.145
0.25 -0.165 -0.159 0.015 -0.094 0.029 -0.078 -0.151 -0.170

Dutch 0.50 -0.239 -0.200 0.012 -0.098 0.024 -0.085 -0.197 -0.208
0.75 -0.314 -0.236 0.019 -0.089 0.018 -0.083 -0.214 -0.247
1.00 -0.384 -0.263 0.120 0.700 - - - -

Data pre-processing techniques Table 6 shows the re-
sults for Overestimation and Underestimation for data pre-
processing techniques. For Adult, Massaging reduces Over-
estimation and Underestimation in more biased scenarios. It
is also interesting to note that almost every result of Mas-
saging was a negative value. This technique keeps Overes-
timation closer to 0, meaning that it balances false positives
between the two groups. The Underestimation has slightly
higher negative values, but these values get closer to 0 as
we insert more bias. This means that the technique under-
estimates the favored group on lower β, but it manages to
balance the Underestimation between groups under higher
β. Re-weighting and Uniform Sampling performed simi-
larly by increasing both Overestimation and Underestima-
tion, although they exhibit high deviation on both. Preferen-
tial Sampling presented hard to predict behavior; it has low
Overestimation and its Underestimation started very nega-
tive and became closer to 0, except for the last biased sam-
ple. For COMPAS, we can see that Massaging and Preferen-
tial Sampling introduce negative Underestimation and Over-
estimation at higher β. Re-weighting and Uniform Sampling
kept both Underestimation and Overestimation closer to 0,

which is desirable. Dutch scenario suggests that Massaging
and Preferential Sampling work similarly by inserting nega-
tive Overestimation and Underestimation when we increase
β. Re-weighting and Uniform Sampling did a good job on
keeping the values close (expect for the case of higher β on
Re-weighting).

Table 7: Overestimation and Underestimation for Auditor
in-processing technique.

β
Tech Repair 0.25 Repair 0.50 Repair 0.75

Over. Under. Over. Under. Over. Under.

0.00 0.056 0.096 0.010 0.006 0.001 -0.014
0.25 0.087 0.269 0.032 0.092 0.001 -0.019

Adult 0.50 0.368 0.644 0.131 0.386 0.002 -0.019
0.75 0.484 0.750 0.482 0.750 0.003 -0.016
1.00 0.483 0.829 0.484 0.821 0.470 0.727
0.00 0.015 0.046 0.019 0.047 0.019 0.046
0.25 0.019 0.048 0.020 0.051 0.017 0.045

COMPAS 0.50 0.018 0.049 0.020 0.052 0.021 0.044
0.75 0.017 0.045 0.020 0.051 0.026 0.050
1.00 0.019 0.051 0.022 0.052 0.018 0.053
0.00 0.122 0.017 0.077 -0.027 0.013 -0.097
0.25 0.128 0.031 0.071 -0.022 0.018 -0.093

Dutch 0.50 0.163 0.084 0.077 -0.015 0.018 -0.096
0.75 0.196 0.265 0.094 0.173 0.019 -0.089
1.00 0.223 0.796 0.109 0.685 0.030 0.314

Auditor technique Table 7 shows results for Overesti-
mation and Underestimation of Auditor technique for each
dataset on repair levels of 0.25, 0.50 and 0.75. For Adult,
every technique performed similarly to Re-weighting and
Uniform Sampling except Auditor at 0.75 repairing level,
which kept almost every value close to zero for both Overes-
timation and Underestimation. For COMPAS, Auditor did
not quite improve the result if compared to no technique
used. In general, those techniques couldn’t keep up with pre-
processing techniques for this scenario. As for the Dutch
case, Auditor improved the consistency of its results when
we increase the repairing level to 0.75 as it has nearly 80%
less overestimation compared to repair level of 0.25. It isn’t
pareto-dominated (which means that it isn’t outperformed
on both metrics) by any technique and provides a competi-
tive result in most cases (if compared to the previous tech-
niques).

7 Conclusions and Future Work
This work introduces a novel benchmark framework for vali-
dating discrimination-aware data mining and machine learn-
ing models using systematically biased datasets generated
from real world data. The need for a benchmark is crucial
due to the lack of a common ground for the evaluation of
techniques. We demonstrated the applicability and effective-
ness of the proposed benchmark through a comparative as-
sessment among several models on three relevant datasets.

The value of our benchmark approach is apparent, when
we observe that it is hard to define which technique is better
than another. What is important is to decide which constraint
is more relevant under a given scenario and then interpret the
accuracy versus discrimination or over/under-estimation re-



sults in order to perform a trade-off between metrics. Our
framework makes this type of decision easier. In the future,
we intend to extend our work to a more complete coverage
on techniques of disparate impact and disparate mistreat-
ment removal, as well as other fairness metrics.
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A Appendix
In this appendix we depict a practical example of our
Bayesian network based sampling method and show results
regarding two more techniques created to reduce disparate
impact and disparate mistreatment. Those techniques were
both developed by Zafar et al in (Zafar et al. 2015) and (Za-
far et al. 2017).

A.1 Practical example
We take the adult dataset (also known as census income
dataset) from UCI Machine Learning Repository 4 (Lichman
2013) as an example for our methodology. This dataset is
a demographic census and it is commonly used to predict
whether an individual’s income is greater than $50K per year
or not given a list of attributes that include age, education
level, marital status, occupation and sex.

A data cleansing step is performed by discretizing some
of the attributes and removing others. The clean dataset is
used as input for the bnlearn Hill-Climbing learner.

Figure 2 is a visual representation of the generated
Bayesian network using the adult census dataset as input.
It can be observed that there is conditional dependency be-
tween the variables relationship and income class and also
there is conditional dependency between relationship and
sex. This evidence supports the fact that this data is biased
with respect to sex, because sex is described by the relation-
ship, e.g., a wife is a woman, and income class is also de-
scribed by the relationship, e.g., being a wife may influence
income.

Figure 2: Bayesian network learned from the adult dataset.

For the synthetic data generation process, we have the
corresponding BN for the Adult census dataset and its con-
ditional probabilities table. Each row in this dataset is ran-
domly generated by observing the BN. The list of dependen-
cies is represented by the directed edges in Figure 2.

Firstly we observe the independent node in the BN, which
is age. We sample age according to its distribution. After
sampling age, we can sample the marital status. The con-
ditional probability table for marital status is given in Ta-
ble 8. Notice that age is divided into bins, which means that
younger people are represented by bins identified by smaller

4https://archive.ics.uci.edu/ml/index.php

numbers and older ones by larger numbers. We omit some
of the bins due to space constraints.

Table 8: Conditional probabilities of marital status given
some age categories (1-younger,10-older)

Marit. Status
Age Cat. 2 (22-28) 5 (46-52) 8 (70-76)

Divorced 0.087 0.206 0.081
Married-AF-spouse 0.001 0.000 0.002
Married-civ-spouse 0.372 0.630 0.560

Married-spouse-absent 0.011 0.016 0.014
Never-married 0.490 0.077 0.060

Separated 0.032 0.033 0.014
Widowed 0.003 0.035 0.265

This process continues until we have sampled every fea-
ture. We then proceed to perform it again until we have
enough rows sampled, thus generating a synthetic dataset
that follows the same distribution as the original adult data.

In order to produce biased samples consider Table 9,
which contains conditional probabilities for the income class
node given education levels (Edu-level) and relationships
(r). We can see that, according to this table, the probabil-
ity of a positive outcome (the individual earns more than
$50K per year), considering the fact that the individual is a
wife is slightly better with higher education levels, but it is
worse for lower education levels. In order to produce even
more bias, we must decrease the probabilities in the first line
of Table 9. For instance, we may decrease the probability of
high income considering that the relationship is wife. This is
done gradually, each time by 10% of the original probability,
until the probability reaches 0, as described in Section 4.2.
For example, the probability of an individual having high in-
come, considering she is a woman and her education level is
10th grade, is 0.100. The first artificial dataset is sampled by
lowering this probability to 0.090, the second one is 0.080
and so on.

The resulting sampled datasets are then used as train-
ing data for a classifier. We chose the C4.5 decision tree
classifier due to its good results on previous works of
discrimination-aware learning. Since our aim is to evaluate
discrimination-aware techniques, the choice of the classifier
is not that important.

Table 9: Conditional probabilities of high income (above
50$ a year) given education and relationship

Cond. prob
Edu-level 1st-4th 10th HS Doctorate

P (y = high|r = wife) 0.000 0.100 0.343 0.850
P (y = high|r = husband) 0.085 0.128 0.311 0.837

A.2 Zafar et al.
We also consider the implementations of Zafar et al. (Zafar
et al. 2017; 2015). (Zafar et al. 2015) designs a fair clas-
sifier that works by modifying the decision boundary of a
classifier. It can maximize fairness under accuracy constraint



and maximize accuracy under fairness constraint. It is also
possible to add a constraint on misclassification of posi-
tive outcome, which means that it only changes the label
for the protected group from negative to positive class and
doesn’t change the label of non-protected groups to the neg-
ative outcome. This technique will be used for the disparate
impact experiments (Accuracy vs. Discrimination). In (Za-
far et al. 2017), they introduced the notion of disparate mis-
treatment and proposed a methodology that aims at reducing
false positives and false negatives rates. The technique con-
sists of training classifiers in such a way that their decision
boundaries are modified in order to avoid those misclassi-
fication rates. We can adjust which constraints we want to
use: correcting false positive, false negatives rates or both.
This technique will be used for the disparate mistreatment
experiments (Overestimation vs. Underestimation).

Discrimination vs Accuracy Table 10 presents results for
Zafar’s disparate impact technique for each one of its three
constraints.

Table 10: Discrimination and Accuracy for Zafar’s in-
processing techniques trained on artificially generated
datasets learned from adult census.

β
Tech Acc. cons. Disc. cons. Misclass.

Disc. Acc. Disc. Acc. Disc. Acc.

0.00 0.128 0.837 -0.018 0.791 -0.066 0.590
0.25 0.156 0.829 -0.032 0.773 -0.016 0.571

Adult 0.50 0.181 0.821 -0.046 0.760 -0.015 0.530
0.75 0.205 0.814 -0.046 0.747 -0.003 0.503
1.00 0.258 0.813 -0.032 0.743 0.063 0.528
0.00 0.010 0.631 0.032 0.629 0.020 0.617
0.25 0.014 0.630 0.014 0.628 0.029 0.615

COMPAS 0.50 0.005 0.628 -0.002 0.622 0.022 0.610
0.75 0.005 0.628 -0.027 0.620 0.040 0.610
1.00 0.004 0.626 -0.043 0.615 0.033 0.607
0.00 0.108 0.806 -0.031 0.746 -0.020 0.695
0.25 0.091 0.801 -0.003 0.765 -0.059 0.647

Dutch 0.50 0.061 0.792 0.044 0.785 -0.105 0.596
0.75 -0.025 0.762 0.127 0.812 -0.090 0.558
1.00 -0.147 0.719 0.252 0.820 0.032 0.705

In Table 10 we present the results for Zafar’s disparate
impact techniques. In particular, the technique described in
(Zafar et al. 2015) for fairness, accuracy and positive mis-
classification constraints. We can notice in the Adult sce-
nario that the Discrimination constraint indeed keeps the
discrimination around the same level at the cost of accu-
racy when the bias level β increases. On the other hand,
for accuracy constraint, it keeps the accuracy around the
same level and the discrimination increases with higher β.
An interesting result can be observed when the positive mis-
classification constraint is applied, it causes lower discrim-
ination levels but at a great cost of accuracy. In COMPAS
case, Zafar’s techniques tried to enforce less discrimination
but also decreased the accuracy. As for the Dutch scenario,
Zafar’s techniques, except the one for positive misclassi-
fication, achieved competitive accuracy compared to pre-
processing techniques and decreased accuracy. It provided
a trade-off between accuracy and discrimination. As for the

highlighted cases, when we apply Accuracy and Discrimina-
tion constraints on adult dataset the accuracy does not suf-
fers very much for higher β. This means that Zafar’s classi-
fiers not only fix the bias inserted but also makes the classi-
fier consistent with the original data. On Dutch dataset the
same pattern can be observed for higher β.

Overestimation vs Underestimation Table 11 presents
results for Overestimation and Underestimation of Zafar’s
technique for each dataset when False Positive, False Nega-
tive and Both constraints used.

Table 11: Overestimation and Underestimation for Zafar’s
in-processing techniques trained on artificially generated
datasets learned from adult census.

β
Tech FP. cons. FN. cons. Both

Over. Under. Over. Under. Over. Under.

0.00 0.040 -0.028 0.063 0.096 0.041 -0.015
0.25 0.072 0.105 0.136 0.264 0.086 0.157

Adult 0.50 0.158 0.348 0.355 0.477 0.266 0.399
0.75 0.365 0.557 0.450 0.593 0.388 0.521
1.00 0.479 0.764 0.466 0.748 0.470 0.751
0.00 0.076 0.117 0.101 0.157 0.106 0.168
0.25 0.089 0.133 0.081 0.125 0.106 0.168

COMPAS 0.50 0.051 0.086 0.067 0.109 0.075 0.132
0.75 0.044 0.066 0.072 0.112 0.075 0.132
1.00 0.048 0.072 0.067 0.108 0.005 0.014
0.00 -0.103 -0.000 -0.114 -0.009 -0.113 -0.008
0.25 -0.125 -0.021 -0.162 -0.056 -0.149 -0.044

Dutch 0.50 -0.142 -0.039 -0.202 -0.103 -0.164 -0.059
0.75 -0.120 -0.028 -0.273 -0.279 -0.154 -0.082
1.00 -0.040 -0.355 -0.453 -0.906 -0.108 -0.656

Table 11 in Adult scenario we can see that Zafar’s tech-
nique with False Positive constraints improved the results
from Table 5 by pareto despite having high Overestimation
and Underestimation for higher β and it also isn’t pareto-
dominated by any pre-processing technique. When we use
the False Negative constraint it also improves the results if
compared to Table 5, but is pareto-dominated to Reweight-
ing, Uniform Sampling and Preferential Sampling. Apply-
ing Both constraints it improves the results, isn’t pareto-
dominated by the previous techniques but is almost out-
performed by the False Positive constraint. Considering the
COMPAS scenario, Zafar’s techniques for False Positive
constraint, False Negative constraint and Both constraints
are almost pareto-dominated by every pre-processing tech-
nique. They didn’t improve the results when no technique is
employed. As for Dutch census case, the False Positive con-
straint improves the results if compared to Table 5. The re-
maining constraints are pareto-dominated by FP constraint.


