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ABSTRACT

What constitutes a ‘fair’ electoral districting plan is a discussion
dating back to the founding of the United States and, in light of
several recent court cases, mathematical developments, and the
approaching 2020 U.S. Census, is still a fiercely debated topic today.
In light of the growing desire and ability to use algorithmic tools
in drawing these districts, we discuss two prototypical formula-
tions of fairness in this domain: drawing the districts by a neutral
procedure or drawing them to intentionally induce an equitable
electoral outcome. We then generate a large sample of districting
plans for North Carolina and Pennsylvania and consider empirically
how compactness and partisan symmetry, as instantiations of these
frameworks, trade off with each other — prioritizing the value of
one of these necessarily comes at a cost in the other.
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1 INTRODUCTION

Gerrymandering, the careful crafting of electoral districts to favor
or disfavor a particular outcome, is a hot topic in contemporary
political discourse. In advance of the 2020 U.S. Census and sub-
sequent redistricting processes, several high-profile court cases,
reform initiatives, and new lines of academic research have ignited
discussions about what kinds of processes and outcomes lead to
the ‘fairest’ districts. However, fairness in this setting is loosely de-
fined. Since the early days of the republic, politicians have used the
power of the pen to draw districts which help their political allies
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and harm their rivals. The term gerrymander itself comes from a
portmanteau used in an 1812 political cartoon lampooning Mas-
sachusetts governor Elbridge Gerry! and a salamander-shaped state
senate district which was part of a plan advantaging the governor’s
Democratic-Republican party. Since then, districts and districting
plans have been identified as unfair for various reasons, but a sin-
gular framework for determining when a districting plan is fair
remains elusive.

Since the early 1960s, advocates for fair districts and districting
procedures have proposed using algorithmic techniques to remove
the human element, and therefore potential for human bias, from
the system. In a letter, economist William Vickrey proposed an
algorithmic framework with a large amount of randomness to even
further separate human decisions from the eventual output [29].
Over the last sixty years, the growth in computational power and
availability of data brings us to a point where Vickrey’s dream of an
autonomous redistricting machine could be realized [2]. However,
the use of an algorithm does not imply that the internal process of
drawing the lines or the districting plan it outputs is unbiased or
fair. Given the renewed interest in the redistricting problem, the
emergence of computational districting methods in legal settings,
and the availability of the necessary resources to properly imple-
ment an algorithmic redistricter, it is important to understand how
differing views of fairness may or may not be compatible with each
other in such a system.

Our Work. We begin by highlighting some recent algorithmic
approaches to drawing districts. We then discuss two conceptual-
izations of fairness in this domain: drawing districts by a neutral
process and drawing districts to achieve a particular outcome which
aligns with certain values. We consider these two approaches in an
empirical domain using computer-generated districting plans for
North Carolina and Pennsylvania and construct Pareto frontiers
to examine the trade-off between optimizing for the compactness
of the districts and the partisan symmetry of the contests in those
districts. Finally, we discuss some future directions for inquiry and
research in the domain of automated and algorithmic redistricting.

1.1 Automated Redistricting

Several works have proposed purely algorithmic approaches to
constructing electoral districts, and the prototypical formulation
is to minimize a functional evaluating a geometric property of the
districting plan, subject to a few standard constraints including
population balance and connectedness. Vickrey’s proposal as well
as the algorithms of Levin and Friedler [20], Chen and Rodden [8, 9],
Hess et al. [17], and Cohen-Addad et al. [11] involve selecting a
random location as a ‘seed’ for each district and then assigning
territory to each of those seeds based on proximity in a particular

!Pronounced with a hard ‘g’ as in grant.
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way, such as with Voronoi diagrams or an iterative flood fill proce-
dure. The shortest splitline algorithm [18, 26] and the diminishing
halves algorithm [27] choose to iteratively cut the state along the
shortest line meeting a particular criterion. For a more detailed
overview of these algorithms, see the introduction of [20]. Other
computational redistricting techniques include the Markov chain
Monte Carlo approach [3, 7, 10, 12, 13] and simulated annealing
[6], which involve making random perturbations to a districting
plan to improve its score according to some measure, as well as
genetic algorithms [21]. Both of these can be used to search for a
maximally compact plan as the other algorithmic approaches do,
but can also be instantiated with other objective functions, and so
have a more versatile functionality but are less clear in how they
arrive at a particular ‘final’ plan.

2 PROCEDURAL NEUTRALITY

The first conceptualization of fairness we discuss is that of a neutral
process; districts ought to be drawn without considering of any of
the potentially sensitive attributes of the underlying population
such as racial or partisan information. The most common proposal
under this framework is to draw districts which maximize a par-
ticular notion of compactness subject to the basic constraints of
connectedness and equal population; indeed this is the underlying
objective of several of the algorithms outlined in the previous sec-
tion. From the legal side, many jurisdictions specify that districts
should split political subunits, such as counties or municipalities, as
little as possible. The degree to which the preservation of political
subunits binds the process in practice varies widely. It is treated
very seriously, for example, in Iowa and West Virginia where the
congressional districts enacted after the 2010 Census do not split
any counties. In other states, it is treated more as a guiding principle.

Taking neutrality as a definition of fairness has several advan-
tages. First, many of the redistricting principles [1, 25], including
contiguity, compactness, avoidance of partisan data, and preserving
political subunits, fall under the framework of neutrality. Addition-
ally, these neutral criteria are typically easy to operationalize and
quantify. For example, we can take simply count the number of
municipalities two districting plans split and objectively observe
that one splits fewer than the other. Such an analysis is not as
straightforward for the outcome-centered criteria described in the
next section. Stern [28] argues that by rigorously adhering to a
standard of compactness, districts may contain fragments of many
different communities, encouraging the formation of coalitions,
which then has a positive impact on the democratic process. For
these reasons, a clear set of neutral criteria for drawing districts has
been a common approach for redistricting reform since the 1960s
[15].

On the other hand, districts being composed of fragmented com-
munities can impede the ability of minority groups to achieve rep-
resentation in the legislative body. The 1982 amendments to the
Voting Rights Act and subsequent court opinions specifically pro-
hibit this kind of fragmentation, colloquially referred to as the
‘cracking’ of voters. Through the history of the United States, polit-
ical mechanisms including the drawing of district lines have been
used to intentionally limit the political power and access of minor-
ity groups. Arguments along these lines admit that adhering solely
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to neutral criteria can perpetuate these kinds of inequities, and this
undermines the use of neutrality as the standard of fairness in this
context.

3 FAIRNESS OF OUTCOME

At the other end of the spectrum is that we should only consider
the outcomes of the elections in the districts, irrespective of the
procedure used to actually generate those districts. Arguments with
respect to this viewpoint underpinned several high-profile court
cases in recent years, including cases where Democrats earned over
half of the statewide vote but a minority of seats. Roughly half of the
vote translated into winning 36 of 99 seats in Wisconsin’s General
Assembly and three of thirteen of North Carolina’s congressional
districts, for example. In Maryland, the Democratic legislature re-
drew the state’s congressional districts to tilt the partisan balance
in one district so as to force a long-time Republican incumbent to
narrowly lose to a Democratic challenger.

If we demand that districts lead to a fair outcome, the question
which must be addressed is how to define a fair outcome? Even
restricting to a solely partisan perspective, where we simply ask for
the outcomes to be fair with respect to the voters’ partisan identities,
this question is very hard to answer. The idea of proportionality,
that each party should win a fraction of the districts (roughly) equal
to its statewide vote share, seems appealing for its simplicity, but
it is often not possible to achieve. In Massachusetts, for example,
Republicans typically win approximately 35 percent of the statewide
vote share in Senatorial and Presidential elections, and a demand for
proportionality would demand they win approximately three of the
nine congressional seats in the state. However, because Republican
voters are distributed roughly evenly around the state, it is very
difficult to draw even a single district with a reliable Republican
majority, let alone three districts [16].

A similar issue of geographic concentration appears when de-
signing districts which satisfy a notion of proportionality with
respect to providing minority groups the ability to elect a candidate
of choice. This is further complicated by the observation that, while
electing a Republican candidate requires a majority (or at least a
plurality) of voters in a district to favor the Republican, electing a
minority group’s candidate of choice does not require drawing a
district in which that group constitutes a majority if there are other
voters who will reliably support that group’s favored candidate.

Using outcomes as the baseline for fairness is sensible for many
reasons. First, if the purpose of representative government is to
represent the populace, then any evaluation of fairness should be
with respect to the groups and viewpoints elected from the districts
to the legislature rather than the process by which the districts
themselves come about. Providing communities-of-interest and
historically marginalized groups access to representation requires
drawing the districts in a way that facilitates these desired outcomes
because a neutral process risks fragmenting these communities. Ad-
ditionally, there are other redistricting principles which require
considering the outcomes of potential elections, such as avoiding
pitting two incumbents against one another. On the other hand,
many seemingly desirable ‘fair’ outcomes are mutually exclusive.
Even narrowly focusing on partisan measures, one person may
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Figure 1: Polsby-Popper scores of four example regions: a
perfect circle, a square, a circle with a ragged boundary, and

a district from the Pennsylvania plan shown in Figure 11.

believe that districts ought to facilitate as near a proportional out-
come as is possible while another may believe that they should
be drawn such that the individual district-level elections are as
competitive as possible. These are, of course, largely incompatible
ideas, since if the elections are competitive, then a small surge in
support for one party will tip several of the seats, resulting in a
highly disproportionate outcome.

4 EMPIRICAL EVALUATION

To empirically evaluate a quantitative trade-off between adhering
to different conceptualizations of fairness, we need to first pin down
a metric by which to evaluate a districting plan along each of these
dimensions. Here, we select two measures from the literature and
use them to evaluate a computer-generated sample of districting
plans. We demonstrate that this setting has a clear trade-off between
using the two different notions of fairness described previously.

For procedural neutrality, we take the maxim that ‘districts ought
to be drawn to be as compact as possible’. We measure the compact-
ness of the districts with the Polsby-Popper compactness score, which
is the most common such measure in the literature and discourse.
The score of a region Q is computed as

47 X Area(Q)
Perim(Q)>2

The Polsby-Popper score measures the normalized ratio of a dis-
trict’s area to the square of its perimeter and takes the form of an
an isoperimetric quotient. With respect to this measure, a circle is
the most compact shape with a Polsby-Popper score of one, and de-
viations from this ideal decrease the score towards zero. This score
is not without its flaws, in particular it is highly sensitive to minor
perturbations of the boundary, which may penalize features like
coastlines in an undesireable way. We compute a few basic examples
of this score in Figure 1; for a modern treatment of isoperimetry
in this context, see [14] and for some of the issues with measuring
districts’ compactness, see [4, 5]. We take the Polsby-Popper score
of a districting plan to be the simple arithmetic mean of the scores
of its constituent districts.

As our measure of fairness-of-outcome, we use a measure of
partisan symmetry, evaluating the extent to which Democratic and
Republican voters are treated equally under a districting plan. To
make this more concrete, we briefly introduce the seats-votes curve,
which uses the results of an election to extrapolate the necessary
statewide vote share for a party to win a particular number of seats.
We describe a simple example here, illustrated in Figure 2. Suppose
in our fictional election, the Republican party earned 45 percent of
the statewide vote share across five individual district contests. In

PP(Q) =
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observed result
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Figure 2: An example of a seats-votes curve.

these races, they won 20 percent, 25 percent, 55 percent, 60 percent,
and 65 percent of the vote, respectively, and therefore winning three
of the five seats. The point (45,3) is therefore on the seats-votes
curve for this election. We can also see that if the Republican vote
share increased or decreased a little bit, the number of resulting
seats would not change, so points such as (48,3) and (42,3) are also
on our seats-votes curve. However, if the Republicans’ statewide
vote share dropped by seven percent or increased by 27 percent, the
number of seats they win would change, so points like (38,2) and
(72,4) are also on the seats-votes curve. Performing this exercise
for all potential vote shares yields the final curve. The modelling
assumption that the percentage point change in vote share is equal
across all districts is called the uniform partisan swing assumption
and is discussed thoroughly by Katz et al. [19].

The seats-votes curve is a simple but powerful picture which
captures many standard notions of partisan asymmetry including
the mean-median score, which measures how far a party’s statewide
vote share is from its vote share in the median district, and the
efficiency gap which measures how many votes one party wastes
relative to the other. Here, we choose a measure designed to capture
asymmetry at all points in the picture: we compute the area between
the seats-votes curve as described above and its inversion about the
midpoint of the figure [24]. This synthesizes, over all vote shares x,
how different the number of seats the Democrats would win with
x percent of the vote versus the number of seats the Republicans
would win with x percent of the vote. In other words, there is an
asymmetry if Republicans win y seats with 50 + x percent of the
vote but do not lose y seats with 50 — x percent of the vote. The area
between the seats-votes curve and its inversion about the midpoint
is the sum over all possible vote shares of the amount of asymmetry
for all of the 50 + x and 50 — x percent pairs. By dividing this area
by the total number of seats and subtracting from one, we obtain a
score between zero and one, where a score of one means that the
plan is perfectly symmetric with respect to both parties, and the
score declines towards zero as one party is better able to translate
votes to seats, relative to the other.
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Figure 3: The partisan symmetry score from the example
seats-votes curve in Figure 2, drawn with a solid red line
and its inversion about the midpoint, (50, 2.5), drawn with
a dashed blue line. The shaded area corresponds to the
amount of asymmetry, and this plan achieves a score of 0.92.

4.1 Generating Plans

We use the GerryChain Python package [22] to examine hypo-
thetical districting plans for two states: North Carolina’s 13 con-
gressional districts and Pennsylvania’s 18 congressional districts.
Both of these states are reasonably close to having an equal num-
ber of Democrats and Republicans and both have had high-profile
court cases challenging their congressional districts in recent years.
The data for both states comes from the mggg-states repository
on GitHub [23]. We evaluate the partisan symmetry score using
a statewide U.S. senatorial race for both states, the 2014 election
in North Carolina and the 2016 election in Pennsylvania. In both
contests, the Republican candidate narrowly won the election.

We are interested in finding plans at the Pareto frontier of com-
pactness and partisan symmetry; districting plans for which there
is no other plan which is both more compact and has a higher
degree of partisan symmetry. We call a plan on the Pareto frontier
Pareto-optimal and one that is not we call Pareto-dominated. Be-
cause the collection of all districting plans which meet the basic
criteria of connectedness and population equality is unfathomably
large, directly constructing plans of interest is extremely challeng-
ing. Instead, GerryChain allows us to use a Markov chain Monte
Carlo procedure to generate a large number of plans and extract
the Pareto-optimal subset as an approximation to the true Pareto
frontier. In brief, our algorithm first generates a random plan then
attempts to make small random modifications which improve either
its compactness, its partisan symmetry, or both, thereby performing
a guided random walk through the space of districting plans. After
repeating this for a large number of random seeds and a large num-
ber of steps for each walk, we can extract all of the Pareto-optimal
plans and use these to draw the empirical Pareto frontier.

The data is in the form of a graph with a vertex for each voting
tabulation district (VTD), which is the smallest geographic units at
which election results are aggregated. Two vertices are joined by an
edge if their corresponding VTDs are geographically adjacent. All
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Figure 4: Comparison of partisan symmetry and compact-
ness for North Carolina. Each point corresponds to one plan
in the sample. Green points are Pareto-optimal, grey points
are Pareto-dominated.

modifications to plans are made at this level, that is, our problem
can be viewed as a graph partitioning problem where each VTD must
be assigned to exactly one district. For this reason, the universe of
possible plans this procedure can generate is more restricted than
when working with smaller units such as U.S. Census blocks or
drawing free-hand contours through the state. The only constraints
we use are connectedness and population equality, which for the
sake of tractability is taken to mean that a districting plan is valid
if the deviation from the ideal of the population of any district is
no more than 2.5 percent.

4.2 Results

In Figures 4 and 5, we plot the compactness and partisan symmetry
of our samples of plans, highlighting the empirical Pareto fron-
tier. We can observe several similarities and differences between
these two figures. First, the general shapes of the observed Pareto
frontiers are the same. For large values of the partisan symmetry
score, one can dramatically increase the achieveable compactness
score by relaxing the demand for a high partisan symmetry score
a little bit. We do not see a similar effect for large values of the
compactness score, where the trade-off between compactness and
partisan symmetry appears roughly linear everywhere except at
the extreme end of the partisan symmetry score. In both states,
we see that it is possible to find plans with nearly perfect partisan
symmetry scores. We show the plan with the highest compactness
score and highest partisan symmetry score in Figures 8 to 11 and
the full set of Pareto-optimal plans are available online, along with
replication code.?

While the shapes of the plots are similar, the numerical values
of the scores associated to points at the Pareto frontier are very
different in the two figures, which we highlight in Figure 6. In North

2https://zachschutzman.com/tradeoffs-fair- dist


https://zachschutzman.com/tradeoffs-fair-dist

Paper Presentation

PA Partisan Symmetry vs. Compactness
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Figure 5: Comparison of partisan symmetry and compact-
ness for Pennsylvania. Each point corresponds to one plan
in the sample. Purple points are Pareto-optimal, grey points
are Pareto-dominated.
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Figure 6: The Pareto-optimal points from Figures 4 and 5.

Carolina, the most compact plans we found have a partisan sym-
metry of roughly 0.99, whereas in Pennsylvania, the most compact
plans have a partisan symmetry score around 0.92. As a point of
reference, the congressional districts enacted in North Carolina
in 2016 and those enacted in Pennsylvania in 2011 were found in
court to be egregious Republican-favoring gerrymanders and have
partisan symmetry scores around 0.9 with respect to the election
data used here, so a score of 0.92 suggests that this plan does indeed
have a significant partisan tilt.

One explanation for this is the differing political geography of the
two states [8]. Pennsylvania has high concentrations of Democrats
in the densely populated corners of the state: the Philadelphia,
Pittsburgh, and Scranton-Wilkes-Barre areas. On the other hand,
the vast middle of the states has a much more sparse population
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Figure 7: The approximate locations of urban areas in North
Carolina and Pennsylvania

Figure 8: The most compact Pareto-optimal plan for North
Carolina.

Figure 9: The Pareto-optimal plan with the highest degree
of partisan symmetry for North Carolina.

and is largely Republican-favoring, although the Democratic tilt
of the corners is much stronger than the Republican tilt of the
middle. This means that, even though the balance of Democrats and
Republicans is roughly equal, the urban districts will ‘use up’ more
of the Democratic vote than the rural districts do of the Republican
vote. Because the Democratic centers are geographically distant
from each other, it is difficult to draw districts to balance this effect
which are highly compact. On the other hand, North Carolina’s
population is much less concentrated. The largest county in North
Carolina has about two-thirds the population of the largest county
in Pennsylvania. Furthermore, there are a number of metropolitan
regions with high concentrations of Democrats in the middle of
the state, including the Raleigh-Durham and the Greensboro areas.
The city of Charlotte is also somewhat centrally located in the
state. For this reason, districts can remain highly compact and also
include portions of these urban regions and rural regions, which
helps to balance the asymmetry that arises from large numbers
of Democrats living in more dense areas, as in Pennsylvania. The
difference in achievable compactness scores may be attributable
to the shapes of the precincts themselves, rather than any deeper
political reason.

This analysis demonstrates that the ‘cost’ of partisan symmetry
in terms of compactness (and vice versa) is different in the two states.
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Figure 10: The most compact Pareto-optimal plan for Penn-
sylvania.

In North Carolina, adhering to a neutral criterion of compactness
gives us a high degree of partisan symmetry almost for free. We
can see in Figure 9 that, with the exception of the two in the eastern
portion of the state, the districts are relatively nicely shaped with
much of the noncompactness coming from the jagged boundary, in
contrast with the contorted shapes in Figure 11. This suggests that
the converse is true as well: in North Carolina, aiming for districts
which treat the two parties symmetrically doesn’t require a severe
deviation from nicely shaped districts.

On the other hand, in Pennsylvania, seeking a high degree of
partisan symmetry comes at a high cost in terms of compactness.
In Figure 11, we can see that in order to achieve partisan symmetry,
the districts must contort around the Democratic strongholds to
properly distribute votes among the less dense, Republican-leaning
rural areas. In the southeast, we see five districts extending little
tendrils into the Philadelphia area, in the southwest we see the
Pittsburgh area divided among four districts. The large purple dis-
trict across the northern part of the state balances a chunk of the
Scranton-Wilkes-Barre area with a massive swath of low popu-
lation rural regions along the New York border. Where there is a
strongly Democratic district in the Raleigh-Durham area and a
strongly Republican district in the northwestern part of the state
and the remaining 11 districts balance mostly rural Republican
populations with urban Democratic ones, but splitting up these
urban areas does not require drawing the same kinds of contorted
shapes as are necessary in Pennsylvania. In contrast, the districts
in Figure 10 are much more regularly shaped, but achieve a very
low degree of partisan symmetry. The four districts nestled in the
southeast portion of the state as well as the teardrop shaped one in
the southwest encompassing much of Pittsburgh are very strongly
Democratic while most of the others have a solid, but relatively
weaker, Republican tilt.

5 DISCUSSION AND FUTURE WORK

This work points toward several avenues for future research, and
we highlight a few here. First, we only considered two instantiations
of two particular notions of fairness in this domain. Repeating this
analysis for other partisan measures, such as the competitiveness
of districts, or other neutral procedures, such as avoiding the split-
ting of municipalities or counties, would shed more light on what
the space of possible districting plans looks like. Additionally, we
demonstrate our analysis on Pennsylvania and North Carolina, and
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Figure 11: The Pareto-optimal plan with the highest degree
of partisan symmetry for Pennsylvania.

the results are considerably different. We posit that this is due to the
political geographies of the two states, and examining this effect is
an important thread for understanding what kinds of reforms might
or might not be effective in various jurisdictions. Future work could
use more sophisticated mathematical and statistical techniques to
describe a relationship between political geography and the trade-
offs we consider here. Our analysis suggests that a one-size-fits-all
approach to drawing ‘fair’ districts is inappropriate and that indi-
vidual states and localities should carefully consider the relevant
trade-offs when redistricting or implementing redistricting reform
initiatives. One factor ignored in this analysis, which is critical to the
process of drawing districts, is respecting communities-of-interest.
Even defining and locating geographically such communities is a
very difficult problem, let alone the determination of whether or
not to preserve that group in a single district. We therefore pro-
pose our analysis as a framework for discussion about trade-offs in
redistricting rather than as a policy recommendation.

In this work, we have demonstrated with a simple model that
demanding districts be drawn to be as compact as possible and
demanding that they satisfy a notion of partisan symmetry are
incompatible, but to different degrees depending on the particular
features of the geographic region in question. Since existing propos-
als and methodologies for automated and algorithmic redistricting
involve finding an approximate solution to an optimization problem,
it is important to understand how changing the objective function
of these procedures can affect the outcome. As more jurisdictions
consider redistricting reforms, they should be cautious about abdi-
cating the line drawing process to algorithms which encode values
different from those of the voters who use the districts to elect their
representatives.
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