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ABSTRACT
Software increasingly plays a key role in regulated areas like hous-
ing, hiring, and credit, as well as major public functions such as
criminal justice and elections. It is easy for there to be unintended
defects with a large impact on the lives of individuals and society
as a whole. Preventing, finding, and fixing software defects is a
key focus of both industrial software development efforts as well
as academic research in software engineering. In this paper, we
discuss flaws in the larger socio-technical decision-making pro-
cesses in which critical black-box software systems are developed,
deployed, and trusted. We use criminal justice software, specifically
probabilistic genotyping (PG) software, as a concrete example. We
describe how PG software systems, designed to do the same job, pro-
duce different results. We highlight the under-appreciated impact of
changes in key parameters and the disparate impact that one such
parameter can have on different racial/ethnic groups. We propose
concrete changes to the socio-technical decision-making processes
surrounding the use of PG software that could be used to incen-
tivize iterative improvements in the accuracy, fairness, reliability,
and accountability of these systems.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; • Social and professional topics→ Governmental reg-
ulations.
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1 INTRODUCTION
Software is increasingly used to direct and manage critical aspects
of all of our lives from how we get our news, to how we find
a spouse, to how we navigate the streets of our cities. Beyond
personal decisions, software plays a key role in regulated areas
like housing, hiring, and credit, as well as major public functions
such as criminal justice and elections. Flaws in complex software
systems are expected, but removing them can be difficult. We are
accustomed to market forces incentivizing the costly process of
debugging and iterative improvement. Unfortunately, in some of
the most critical areas of software deployment, market forces may
be utterly insufficient.

Consider the case of criminal justice software and in particu-
lar, probabilistic genotyping software that matches DNA evidence
found at crime scenes to potential suspects. The case of the Forensic
Statistical Tool (FST) developed by the Office of the Chief Medical
Examiner (OCME) in New York City illustrates that developers
may be tempted to avoid costly debugging by claiming intellectual
property protection in order to keep knowledge of known problems
away from defendants, defense teams, prosecution teams, experts,
the scientific community, government oversight, and the public
[8]. Is this an isolated incident or the symptom of a larger problem
impacting critical software in criminal justice and many other areas
of our lives?
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In this paper, we discuss flaws in the larger socio-technical sys-
tems in which critical software is approved, chosen, deployed, and
trusted. We use PG software as one concrete example, but we draw
parallels to software in other areas. In addition, we propose con-
crete changes to these larger socio-technical systems that could
and should be used to truly incentivize iterative improvements in
critical software systems. As software is increasingly used in high-
stakes decisions about the lives of individuals, it is essential that
we question what will make that software responsive to the needs
of individuals, to society, and to the law, not just the interests of
those making the decisions or developing the software.

2 PROBABILISTIC GENOTYPING SOFTWARE
AND EXISTING INCENTIVES FOR
ITERATIVE IMPROVEMENT

When DNA evidence is found at a crime scene, it can be compared
to the DNA of possible suspects. If there is a high quality evidence
sample from one contributor, forensic analysts can often make the
comparison manually, by visually comparing electropherograms
generated from both the evidence sample and from a suspect’s
DNA. However, there are many things that can complicate this
comparison. In standard DNA testing, Polymerase chain reaction
(PCR) amplifies the DNA regions examined in order to allow for
detection. However, when low amounts of DNA are being tested,
stochastic effects interfere with the ability to accurately detect the
DNA profile. Sometimes peak heights are skewed, alleles fail to
be amplified (drop-out error) or artifacts are amplified (stutter) or
contaminant alelles appear (drop-in error ). This is a bit like errors
that result from repeated photo-copying of an image. Errors are
especially likely when the original DNA sample is small. Even the
cells deposited by a single fingerprint are technically sufficient for
testing, but results are more reliable with substantial quantities of
DNA, such as that often found in blood or semen samples.

Another source of complication comes from multiple contribu-
tors to an evidence sample. The more individuals who contribute
DNA to a sample, the more difficult it is to interpret, like it might
become increasingly difficult to identify a single song being played
when multiple songs are playing at once. Some contributors may
have depositedmoreDNA than others, like some songs being played
louder than others. Most labs validate PG software systems for only
a small number of contributors (e.g. 1-4) and the person running
the software must say how many contributors there are to a given
sample. The setting of that parameter can have a substantial impact
on the result, but in real case work, it is often impossible to know
how many contributors really contributed to an evidence sample.

Consider cases of "Touch DNA" or DNA from fingerprints left on
objects, for example a gun found at an outdoor crime scene. There
may be little DNA present and what is present may be from an
unknown number of contributors, perhaps vastly exceeding the
number of contributors the software has been shown to reliably
handle. The evidence sample may also have been degraded by
being outside or contaminated by DNA that has been transferred
to the scene without individuals actually being present. All of these
possible sources of error add up and typically make it impossible for
human analysts either to interpret the data manually or to double
check software results. PG systems use advanced mathematics to

make an informed statistical guess (probabilistic) about the source
of DNA (genotyping) in a sample.

PG software systems have a complex set of parameters such
as the number of contributors, estimates of the impact of drop-in
errors and drop-out errors, the definition of a "random" individuals
as specified by population frequency data, a parameter theta that
reflects the degree of genetic diversity in a population, and many
more. These parameters can have large impacts on the answer
generated by a PG system and the uncertainty introduced when
a forensic analyst selects a certain configuration is not always
highlighted when presenting the data in court.

The key question we are asking in this paper is do sufficient
incentives exist for flaws in the development and use of these com-
plex systems to be identified and fixed? As citizens of the modern
world, we are accustomed to bugs in complex software. We may, for
example, experience a bug on our cell phone and find that the same
odd problem is only appearing for us, not our friends or family. We
may or may not report this bug ourselves, but we generally trust
that bugs will be found and fixed eventually, that market forces will
deliver incremental improvements. However, the same is not true
for many critical black box systems, like PG software.

In the case of PG software, what happens when someone reports
a problem? If a defendant reports that they have been incorrectly
identified as a contributor to an evidence sample, will a bug report
be investigated or will it simply be assumed that they are guilty?
What if errors occur more often for some groups of people that
others? Will forensic analysts simply trust the output of software
if they cannot manually replicate the results? What if there is a
serious bug in the system as there was in the case of the FST [8]? In
that case, the developers knew clearly there was a problem that was
causing their system to report impossible answers. OCME "fixed"
the defect by dropping data that triggered the flaw even if that data
might have been important to the defense or prosecution. They
notified no one when data was dropped in a particular case and also
aggressively resisted expert witness review that could have exposed
the problem for 5 years while using the output of the system as
evidence in over 1000 serious criminal cases [6].

What about market forces? FST was developed by a crime lab
for in-house use. Would the incentive structure be different for
a commercial product? Commercial developers might have more
ability and incentive to improve their products, but they respond
most directly to the interests of those purchasing their software.
In criminal justice software and in many other examples of black-
box decision-making software in areas like hiring or credit, the
interests of those purchasing the software to make decisions can
be very different than the interests of those being decided about. In
criminal justice, for example, purchasers may want the software to
help them interpret more DNA samples or close more cases, but that
is different than being sure the samples are interpreted correctly
or that the cases are closed correctly. Intellectual property rights
were intended to benefit those who develop key advancements and
share them with society. However, intellectual property rights can
also be used to shield developers from identification of flaws they
don’t want to invest in fixing or to hide evidence that the system
might be discriminating illegally [13].
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3 WHEN TRUSTED BLACK-BOXES DON’T
AGREE

Probabilistic genotyping (PG) software is designed to extend the
forensic scientist’s ability to analyze samples that are too complex
for manual interpretation. These systems produce a likelihood ratio
(LR) metric which is a complex statistical measure comparing the
relative likelihoods of the data, given two competing hypotheses.
Typically one is considered an incriminating ’prosecution hypothe-
sis’ and an exonerating ’defense hypothesis.’

The common formula for computing a likelihood ratio is LR =
Pr (E |Hp)/Pr (E |Hd) where E is evidence or observed data. The nu-
merator represents one hypothesis (Hp) aligned with the prose-
cution position—usually that the suspect contributed DNA to the
mixture, and the denominator represents the defense hypothesis
(Hd) —that an unknown person left their DNA on the evidence. For
samples containing DNA from multiple individuals, both Hp and
Hd will include additional contributors, either assumed contribu-
tors whose genotypes are known or contributors whose identities
are unknown. There are many known problems with the words
used when presenting LRs in court, by journalists and even by
trained forensic analysts. For example, an inclusionary LR is not
a DNA match nor does an LR of X imply that it is X times more
likely that the suspect is guilty. The probability of the evidence
given the hypothesis that the person is guilty is not the same as
the probability of guilt given the evidence. LR’s report the first and
juries are tasked with determining the second and they are not
logically equivalent and rarely equal. A discussion of the misuses
of LR as a metric are critical in how the output of these software
systems are used in court but is beyond the scope of this paper [7].

An LR greater than 1 means there is more support for the prose-
cution hypothesis and is therefore considered inclusionary which
is often inculpatory or suggestive of guilt. An LR less than 1 means
there is more support for the defense hypothesis and is therefore
exclusionary which is often exculpatory (suggestive of innocence).

Many probabilistic genotyping software systems have all been
developed to perform this same task. Some are proprietary soft-
ware packages produced by commercial companies, some are open
source software packages produced by researchers, some are pro-
duced in-house by crime labs. The most common software packages
used to introduce evidence in court varies by jurisdiction. Commer-
cial software packages, STRmix and TrueAllele, are used widely
throughout the United States. New York City used FST, a software
package developed in-house by the Office of the Chief Medical
Examiner from 2012 to 2017 until they largely replaced it with STR-
mix. Open-source systems LRMix and EuroForMix have been used
widely for casework in Europe [? ? ].

Although these systems are designed to answer the same forensic
question, they can produce very different results and little effort has
been made to standardize their behaviour or to provide automated
testing interfaces that would allow them to be compared across a
large number of test cases. Their results are not routinely compared
in real casework. There have been academic publications comparing
systems[4, 12], but more work is required to fully understand when,
how and why these systems differ - between programs, within
releases of the same program and with variations in parameters.

Evidence of problems has surfaced in real casework. For example,
in a post-conviction matter, a fingernail sample which contained a
mixture of the victim and the defendant was analyzed by two PG sys-
tems, TrueAllele and STRMix, which produced results that differed
by many orders of magnitude. TrueAllele produced a exclusionary
statistic in the trillions while STRmix produced an exclusionary
statistic of 666 which fell within the laboratory’s “uninformative"
range. Later, a more complete DNA profile from the victim was gen-
erated and used in a subsequent STRmix analysis which generated
a slightly larger exclusionary likelihood ratio of 1,980[1].

To explore differences between systems in a more systematic
way, we added automated testing harnesses around three systems,
FST, LRMix, and EuroForMix, in order to compare them on a set of
test cases constructed by OCME for use in validating FST. These
test cases consist of DNA mixtures created in a controlled labora-
tory setting and as a result, unlike with evidence samples in real
casework, the true contributors and known non-contributors are
clearly known. The OCME validation study and its data is described
in more detail in Appendix A.

In Figure 1, we compare these three systems. The Y-axis shows
the mean likelihood ratio (log scale) produced for both a set of true
contributors to test samples (mean of approximately 1200 total LR
results for true contributors) and a set of known non-contributors
(mean of approximately 336,000 total LR results for known non-
contributors). In some cases, individual systems especially FST
produced an error or failed to produce a result. The mean graphed
in Figure 1 includes only tests which produced a result. Results
above 0 (log 1) are inclusionary and results below 0 are exclusionary.
Notice that as expected the mean LR ratings for contributors are
above 0 and the mean ratings for non-contributors are below 0.
However, the differences among systems are meaningful.

We tested each system using its default configuration and also
modified the configuration of LRMix and EuroForMix to make them
as closely comparable to FST as we could ("As FST settings"). For
FST itself, the "As FST" configuration is the same as the default
configuration. For LRmix and EuroForMix we modified a number of
the parameters used (e.g. parameters that estimate the rates of drop-
in and drop-out errors) to more closely match FST. We will discuss
the important impact of some of these parameters individually in
more detail later in this paper.

It is notable that the drop-out parameters differ not only in their
default settings, but also in the granularity at which they can be set
and the way in which the parameters can be changed. For example,
LRmix only allows one drop-out rate to be set for an entire case
through the GUI. FST sets finer granularity per-locus drop-out rates
that were determined in validation, but these can only be changed
through an internal database. One result of this is that FST does not
use a constant drop-out rate across all cases. When we run LRmix
and EuroForMix in "As FST" mode, we attempt to vary the drop-out
rates per case as FST does. This illustrates some of the fundamental
problem due to the lack of standards across PG software. Even
though they are designed to do the same job, they are not designed
to be easily comparable. Establishing such standards is one key
recommendation arising from our work.

We performed an Analysis of Variance (ANOVA) test on all con-
figurations shown in Figure 1. The null hypothesis of an ANOVA is
that the means of each data set are equal, and a p-value below 0.01
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Figure 1: Y-axis shows the mean likelihood ratio (log scale) produced for both true contributors to test samples and for a
set of known non-contributors. Results are shown for three PG systems: FST, LRmix and EuroForMix. We tested each system
using its default configuration. We also modified the configuration of LRMix and EuroForMix to make them more closely
comparable to FST. Results above 0 (log 1) are inclusionary and results below 0 are exclusionary.

infers a statistically significant difference. In all cases for our data,
the p-values were less than 0.001, inferring statistically significant
differences. When comparing the default settings for all systems,
the F statistic, which gives a measure of how different the means
are, was more than 8,000. When we tried to make the systems as
comparable as possible (the "as FST" settings rather than the de-
faults), the F statistic was less than 100. Since the F statistic is so
large, the discrepancies in the results between the systems are not
due to variation within each system, but a fundamental difference
between the systems. Thus, we were able to make the systems more
directly comparable ( lower F Statistic), but the differences that re-
main are still statistically significant (p-value less than 0.001). Since
a significant ANOVA result only tells us that we can reject the null
hypothesis that the means are the same, we followed this test with
a post-hoc Tukey test. A Tukey test calculates pair-wise 95 percent
confidence intervals of the difference between the means. If zero is
inside this interval, we can conclude the pair does not show enough
evidence to claim there is a difference in the means. The Tukey test
confirmed that the difference in each pairwise comparison of our
means were all statistically significant. Residual analysis was also
performed on the data to verify that ANOVA was an appropriate
test for our dataset.

The mean differences show in Figure 1 are, of course, not as
dramatic as the worst possible differences in individual cases such
as the differences reported in the Robinson case [1]. They indicate
more wide-spread underlying differences. For example, for non-
contributors, LRmix is more exclusionary than FST especially in
its default settings while EuroForMix is more inclusionary. The
mean differences are smaller for contributors, but the trends are the
same. These differences suggest a natural question: why are we not
more regularly requiring that the output of these different trusted
black-box systems be compared. If the court system would trust the

output of a number of different software packages, but they don’t
agree, that could be one way to provide examples to incentivize
debugging and iterative improvement. Some difference may be due
to differences in the underlying models, but some differences may
be due to errors.

In Figure 2, we focus on one system, LRMix, and evaluate how
changes in two key parameters, drop-out rate and theta, impact the
results. As we have seen, drop out rate is related to the liklihood
of drop out errors. The theta parameter is related to the amount of
genetic diversity in a population. 1

Once again, the Y-axis shows the mean likelihood ratio (log scale)
produced for both true contributors (mean of approximately 1200
total LR results for true contributors) to test samples and for a set
of known non-contributors (mean of approximately 336,000 total
LR results for known non-contributors).

Figure 2 illustrates that varying the drop-out rate and theta both
have substantial impact on the LR results. Higher drop-out rate
yields more inclusionary results, while higher theta values yield
more exclusionary results. Notice that the contributor line crosses
the Inclusion-Exclusion boundary in both cases. Thus, changes in
these parameters can mean the difference between inclusion and
exclusion! Residual analysis and ANOVA were performed on this
data to confirm that the differences are statistically significant.

In the case of the theta parameter, it is crucial to consider the
potential for disparate impact. Theta is designed to account for
differences in the genetic diversity among populations. Lower theta
values would be appropriate for a population with high genetic
diversity while higher theta values would be appropriate for a pop-
ulation with lower genetic diversity. For example, some indigenous

1The results of experiments varying additional parameters with FST, LRMix and
EuroForMix, as well as additional materials related to this work, are available at
https://afsweb.clarkson.edu/projects/cjsoftware/.
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Figure 2: Y-axis shows the mean likelihood ratio (log scale) produced for both true contributors to test samples and for a set
of known non-contributors. We test LRMix with four different settings for the drop-out rate parameter [LEFT] and seven dif-
ferent settings for the theta parameter [RIGHT]. Results above 0 (log 1) are inclusionary and results below 0 are exclusionary.

communities may have lower genetic diversity because they live in
a smaller, more isolated community.

Allele frequencies used in PG software are often grouped into
highly questionable categories such as Black, Caucasian, Hispanic,
and Asian. As defined in this way, the Caucasian subpopulation
has relatively high genetic diversity and thus for a constant theta
value would have a lower false inclusion rate than some other
populations and may therefore be less vulnerable to being falsely
accused. Similarly, a theta value set based on testing for the Cau-
casian subpopulation could lead to false inclusions for other smaller,
potentially vulnerable, minority populations. This is especially con-
cerning given the tendency for critical software systems to be tested
only on majority groups [2]. If these systems are not being actively
tested against diverse sub-population benchmarks, there is a clear
risk of disparate outcomes along the lines of protected categories
such as race and ethnicity. In one notable case, PG systems were
used as part of an investigation into an assault by a group of 8
Hasidic men. Concerns were raised about the ability of PG software
to accurately distinguish among members of this more genetically
insular population [6]. PG software testing with a sample contain-
ing DNA from 8 Hasidic men might incorrectly include another
Hasidic man whose DNA was not actually part of the sample.

The presentation of LR results in court is also not as simple as
just inclusion or exclusion. There are scales that convert LR val-
ues into a textual ratings such as "Exclusion," "Limited Support,"
"Moderate Support," "Strong Support," and "Very Strong Support."
In Figure 3, we show the impact on all 3 systems of two different
standards for mapping LR results onto verbal descriptions. On the
x-axis, we show the OCME verbal standard and on the y-axis the
SWGDAM verbal standard. These verbal standards dictate how a
forensic analyst interprets the results and how they will represent
the result when evidence is presented in court. We performed a Chi
Squared test of independence. The null hypothesis, in this case, is

that the proportion of data binned into each category, exclusion,
weak inclusion, etc., will be the same for the OCME verbal stan-
dards and the SWGDAM verbal standards. A low p-value infers
a statistically significant difference in how the results would be
testified in court. This test was performed for each configuration,
and for each test the p-value was less than 0.001, confirming that
the same results would be categorized differently based on a lab’s
choice of standard, and therefore presented differently in court.

4 RECOMMENDATIONS
In total, we have documented substantial differences in the results
generated by three PG systems as well as the large impact of varying
parameters whose contributions are often not clearly appreciated.
We have also seen the impact of different verbal standards on how
results are presented. Despite the fact that these systems do the
same job, there has been relatively little effort to standardize their
behavior. We recommend that multiple independent PG systems be
regularly compared for real casework. If we would trust the output
of any of these systems, what does it say when they do not agree?
By not regularly comparing these systems to each other on real case
work, we are losing a key opportunity to regularly surface flaws
and incentivize iterative improvement. We also recommend that
agencies such as the National Institute of Standards and Technology
(NIST) establish standards for key aspects of the development and
use of PG systems including key parameters (both their meanings
and their granularity of control), input file formats, output file
formats, and population frequency definitions. We also recommend
that more information be provided in court about the way in which
the settings for key parameters are determined and whenever the
setting is uncertain, how the software results would change if these
parameters were set differently. An important question to ask is
who in the larger socio-technical system is best able to set each
parameters. Are some parameters best set by developers for all
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Figure 3: We bin the data from all three systems shown in Figure 1 by the OCME verbal standard and the SWGDAM verbal
standard, two scales that convert LR values into a textual rating. The x-axis is the OCME verbal standard and the y-axis is the
SWGDAM verbal standard. Deviations from the diagonal show differences in how the results will be presented/interpreted.

cases? Will the users (forensic analysts in the case of PG software)
have the information they need to set key parameters on a case by
case basis?

We have discussed the potential for disparate impact on along
the lines of protected categories such as race and ethnicity. We
highly recommend that developers of any critical software system
actively test against diverse sub-population benchmarks. Legisla-
tion is likely to be required to achieve this. In the United States, the
Algorithmic Accountability Act would, if passed, require companies
to study and fix flawed computer algorithms that result in inac-
curate, unfair, biased, or discriminatory decisions is one example
of possible legislation in this space[14]. Because it is difficult to
anticipate all possible sub-populations of interest, neither terms of
service nor other legislation should be allowed to prevent third-
party testing for disparate impact or the publication of the results
of such testing.

We strongly recommend adversarial testing done by groups who
will be rewarded when they discover flaws. When validation studies
are only performed by the developers, they are likely to focus
on demonstrating the effectiveness of the system rather than on
aggressively identifying problems. Adversarial testing is important
to counteract the tendency to sweep errors under the rug when
they are found or to put in an inappropriate fix to make the problem
go away as we saw in the FST case [8].

Further, we recommend targeting the procurement phase of
software whenever public funds are used to purchase software. Pro-
curement policies should require or at least give substantial credit
for products that include pro-transparency factors. Such factors
could include open-source software, access to software engineer-
ing artifacts including bug tracking/change log databases, internal
testing plans and results, software requirements and specifications,

hazard and risk assessments, design documents, etc. Ideally, devel-
opers or third parties would offer bug bounties or other funding
streams to incentivize third party testing.

It is worth specifically considering whether public software
should more generally be mandated to be open source. It is inter-
esting that for PG software this is much more common in Europe.
In the United States, it is not clear that there is the political will to
require this. Even defense experts in criminal cases are regularly
denied access to source code and system details under protective
order when software vendors claim trade secret protection [13].
There are tools and strategies for auditing software systems beyond
source code access. It is worth mentioning that for software sys-
tems with substantial AI/machine learning components, it may be
even more important to have information about the training data
used that to have access to the source code. Alternate tools and
strategies for algorithmic accountability and explanation are even
more essential in these cases [5, 10]

Most PG systems are designed with casework in mind. Many
systems have no native ability to batch-process multiple evidence
samples or compare a single evidence item to multiple reference
profiles (e.g. a set of non-contributors or an offender DNA database).
While it is possible to modify source-available systems to enable
batch-processing, any third-party modification risk introducing
defects and require further software validation. APIs, or at least
command line interfaces, could allow for easier batch-processing
tasks in both casework and research settings. Requiring these during
the procurement phase would be an important advance.

Many important decisions about the lives of individuals are made
with software chosen outside the context of a public procurement
process. In these environments, there are even more hurdles to the
type of adversarial third party testing necessary to reveal problems.
In an environmentwhere the terms of service ofmany key platforms
seek to prevent such testing. We should recommend lobbying for
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provisions in legislation such as the Computer Fraud and Abuse
Act and the Digital Millennium Copyright Act to specifically permit
testing aimed at identifying disparate impact and other possible
violations of laws regarding fair practices in areas such as hiring,
housing and credit.

5 CONCLUSION
Software is increasingly used to direct and manage critical aspects
of all of our lives from how we get our news, to how we find a
spouse, to howwe navigate the streets of our cities. Beyond personal
decisions, software plays a key role in regulated areas like housing,
hiring and credit, as well as major public functions such as criminal
justice and elections. It is easy for there to be unintended defects
with a large impact on the lives of individuals and society as a whole.
Bugs enter the systems at design time, during implementation, and
during deployment. Additional problems occur in the way software
systems are used in individual cases. Testing against diverse sub-
population benchmarks is especially critical. Generally, we must
ask what in the larger socio-technical decision-making system will
incentivize debugging, iterative improvements and adherence to
the laws that protect the rights of individuals in these black-box
systems. Without a credible plan to incentivize debugging and
iterative improvement, it is irresponsible to deploy software in
critical application areas.

In this paper, we have used criminal justice software, specifically
probabilistic genotyping (PG) software, as a concrete example of
black-box systems that can be unresponsive to the interests of indi-
viduals about whom big decisions are being made. We describe how
PG software systems, designed to do the same job, produce different
results and can have a disparate impact on different racial/ethnic
groups. We also discuss the impact of these differences on how the
results are presented in court. We proposed concrete changes to
the socio-technical decision-making processes surrounding the use
of PG software that could be used to incentivize debugging and
improvements in the accuracy, fairness, and reliability of these sys-
tems and how these lessons could be applied beyond PG software
to the multitude of critical software systems impacting the lives of
individuals today.
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A APPENDIX: FST AND THE OCME
VALIDATION STUDY
The NY State Commission on Forensic Science approved FST for use in casework
based on a validation study designed and conducted by Office of the Chief Medical
Examiner (OCME). The validation study underlying FST consisted of 439 two- and
three-person mixtures of varying quantities of DNA and contributor proportions,
genotyped using both High Copy Number (HCN) and Low Copy Number (LCN)
protocols. Since these mixtures were created in a controlled laboratory setting,
their true contributors and known.
The samples were constructed based on single-source blood and cheek swab
samples of known origin as well as from items handled by multiple individuals,
such as a computer mouse or a pen. Some, but not all, of the touched items were
cleaned with bleach and ethanol prior to handling. Despite this pre-cleaning
step, it is interesting to note that some samples still contained DNA that did not
belong to any of the deliberate contributors.
OCME evaluated all 439 mixtures in comparison to their known contributors and
a set of 1,246 non-contributors. The non-contributor set consists of genotypes de-
veloped from OCME morgue bodies and a national data set [3]. Allele frequency
rates were established for NYC by OCME through genotyping morgue bodies.
OCME developed a subset of these genotypes at only thirteen of the fifteen loci
used by FST, simulating genotypes for the remaining two loci. Sub-populations
were grouped by self- or OCME-reporting into African-American, Asian, Cau-
casian, and Hispanic categories. The lab removed information on the races of the
donors to the mixtures, though in publications they do claim that the mixtures
represent the diversity of New York City [9, 11].
OCME originally wanted to validate FST for four-person mixtures and additional
four-personmixtures were generated during the study, but ultimately FSTwas not
validated for the evaluation of four-person mixtures [9]. OCME never published
the validation data set but did produce it in 2012 pursuant to an agreement
reached after litigation in the case People v. Collins. It was produced in printed
form, then scanned and partly transcribed by the defense team.
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