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ABSTRACT

Concerns within the machine learning community and external
pressures from regulators over the vulnerabilities of machine learn-
ing algorithms have spurred on the fields of explainability, robust-
ness, and fairness. Often, issues in explainability, robustness, and
fairness are confined to their specific sub-fields and few tools exist
for model developers to use to simultaneously build their modeling
pipelines in a transparent, accountable, and fair way. This can lead
to a bottleneck on the model developer’s side as they must juggle
multiple methods to evaluate their algorithms. In this paper, we
present a single framework for analyzing the robustness, fairness,
and explainability of a classifier. The framework, which is based
on the generation of counterfactual explanations' through a cus-
tom genetic algorithm, is flexible, model-agnostic, and does not
require access to model internals. The framework allows the user
to calculate robustness and fairness scores for individual models
and generate explanations for individual predictions which provide
a means for actionable recourse (changes to an input to help get a
desired outcome). This is the first time that a unified tool has been
developed to address three key issues pertaining towards building
a responsible artificial intelligence system.
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The concept of counterfactuals has a well-established meaning in the causality litera-
ture. However, we are using the term "counterfactual" in the counterfactual explanation
sense, one that has been recently defined in the explainability literature [15] and [13]
where the model implies a machine learning model and not a causal mode and where
no causal assumptions about the world are made. A detailed discussion on this is
presented in [15]’s section III-C.
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1 INTRODUCTION

Within the machine learning community, researchers are actively
building approaches for explainability, fairness, and robustness of
models. However, these existing approaches function in isolation
from the other concerns, and within these one-off solutions, there
are limitations that may make them less feasible to use in the real
world. For example, many explainability approaches require mak-
ing assumptions on the type of model [14] and the type of data [15]
for which they can be used. Many methods that provide explain-
ability [2] and robustness [18] require access to the model weights
and internals. A company may not wish to divulge model internal
processes but still needs to comply with regulations. Meanwhile,
there exist a wide variety fairness metrics and viewpoints [3], and
the lack of consensus is just a reflection of the complexity of this
concept.

To address these shortcomings and provide a single framework
with which to evaluate robustness and fairness as well as pro-
vide explainability, this paper introduces a unified approach called
Counterfactual Explanations for Robustness, Transparency, Inter-
pretability, and Fairness of Artificial Intelligence models (CERTIFAI).
CERTIFAT’s capabilities are built on the generation of counterfac-
tual explanations. Counterfactual explanations for machine learning
models were first introduced by [15] to help people understand
machine-learning-generated decisions. Given an input data point
and a classifier model, a counterfactual explanation is defined as
a generated data point (i.e. a point found in the input space that
might not necessarily be a training point) that is as close to the
input data point but for which the model gives a different outcome.
For example, if a user was denied a loan by a machine learning
model, an example counterfactual explanation could be: “Had your
income been $5000 greater per year and your credit score been
30 points higher, your loan would be approved. [15] argue that
counterfactuals are a way of explaining model results to users such
that they can identify actionable ways, called recourse, of changing
their behaviors to obtain favorable outcomes.

Although developed to help explain model decisions to users,
we show how counterfactual explanations can be used to evaluate
issues in fairness and robustness in addition to providing explain-
ability. However, some important issues must be resolved before
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Figure 1: The CERTIFAI counterfactual generation process.
The decision boundary for a binary classifier is shown, with
the input instance in black. We sample a set of points (left)
in the feature space with a constraint that they must lie
on the other side of the decision boundary (green points).
The algorithm then evolves these samples (middle) to gener-
ate individuals that lie closer to the input point but on the
other side of the decision boundary. Finally, a smaller set,

the size of which is user-defined, of counterfactuals is gen-
erated (right).

counterfactual explanations can be used in realistic settings for
explainability as well as for deeper analysis of model character-
istics. As promising as the original method [15] and subsequent
methods of generating counterfactuals [13, 14] are, they are also
limited in that some only work for linear models, while others
cannot deal with different data types. To resolve these limitations,
CERTIFAI generates counterfactual explanations via a custom ge-
netic algorithm. The meta-heuristic evolutionary algorithm starts
by generating a random set of points such that they do not have
the same prediction as the input point. A subsequent evolutionary
process results in a set of points close to the input that maintain
the prediction constraint. Figure 1 shows an example of three coun-
terfactuals (green points) generated for a given input (black point).
A major advantage of using the genetic algorithm to generate coun-
terfactual explanations is that it is model agnostic and works with
a variety of data types (from mixed tabular data to image data)
without any approximations to or assumptions for the model. Ad-
ditionally, constraints on the form of the resulting counterfactual
explanations can be included, making it adaptable to a users needs.
The major contributions of this paper include:

o Counterfactual explanations are generated using a custom
genetic algorithm, which is model-agnostic, flexible, and
can be used to provide explanations and recourse to users
subjected to the decisions of the classifier.

o Counterfactual explanations are used to generate a normal-
ized score(NCERScore), which can be used to compare the
robustness of different models.

e Counterfactual explanations can be used to evaluate fairness
with respect to a given user as well as the fairness of the
model towards groups of individuals. We define burden, a
notion of group fairness that is more understandable and
explainable than presently used group-fairness metrics [4]

Using CERTIFAI, an end-user (i.e., a person subject to a machine
learning model’s decision, a model developer, or a third-party regu-
lator), can understand the issues most relevant to their situations.
Because of limited space, we include the following in the appendix
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2. detailed related work, details of the genetic algorithm, counter-
factuals for images (adversarial examples), additional experiments
on explanations with constraints including sparse explanations and
notions of individual fairness. We encourage readers to go through
the appendix for a detailed analysis.

2 RELATED WORK

Research on the explainability, fairness, and robustness of machine
learning models and the ethical, moral, and legal consequences of
using Al has been growing rapidly. General surveys on explainabil-
ity, fairness, and robustness have been described by [10],[5], and
[1] respectively. In this section, we discuss and compare the litera-
ture for analyzing the robustness, fairness, and interpretability of
machine learning models with a particular focus on counterfactual
explanations. Table 1 summarizes the key features of CERTIFAI and
the work most related to ours. CERTIFAI uniquely covers all six
desirable features, as indicated by the table.

3 THE CERTIFAI FRAMEWORK

Figure 2 shows the CERTIFAI framework at a high level. An overview
of the framework is described below and the details of each aspect
of the framework are provided in subsequent sections. The only
required inputs to CERTIFALI to generate explanations are a black-
box classifier and one instance or a set of instances appropriate for
the model (first box on left in Figure 2). Optionally, the end-user or
model developer can supply a set of constraints to which the coun-
terfactual explanations will adhere (dotted box on left in Figure 2).
These optional constraints are 1) not allowing certain features to
change, 2) specifying a range of values that the features can take
and the data-type of features, and 3) k, the number of counterfac-
tual explanations per input instance. The constraints provided by a
model developer are chosen as default which can be over-ridden by
the user’s preferences. CERTIFAI then generates k counterfactual
explanations for each input instance using a custom genetic algo-
rithm (two middle columns of Figure 2) and these explanations are
then used to perform the robustness, fairness, and explainability
analysis in addition to providing counterfactual explanations for
individual instances (far right of Figure 2).

3.1 Custom genetic algorithm

In this section, we formulate a custom genetic algorithm to find
counterfactual(s) that CERTIFAI uses for its analysis. Consider a
black-box classifier f and an input instance x. Let the counterfactual
be a feasible generated point c. Then the problem can be formulated
as:

min d(x, c)
c

s.t.f(c) # f(x)

where d(x, c) is the distance between x and c. To avoid using any ap-
proximations to or assumptions for the model, we use a genetic algo-
rithm to solve Equation 1. The custom genetic algorithm works for
any black-box model and input data type and it is model-agnostic.

(1)

2The appendix can be found at:
https://drive.google.com/open?id=1AXURcktJmUx0gSd6OVOLNIU6i9¢ JN G J
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Figure 2: The CERTIFAI framework. Given a black-box ML model and input data along with optional user-specified feature
constraints (such as feature type, range, etc.), the method generates counterfactual explanations using a genetic algorithm.
The explanations can then be used for three purposes: explainability, fairness and robustness. k represents the number of
explanations per input which can be set by the user for recourse purposes and is set to 1 for the feature importance, fairness
and robustness analysis. On the right, we show how each of CERTIFAI’s attributes is useful for different stakeholders using

the tool

Method Black-box Model-Agnostic

Mixed-data Exp.

Fairness Robustness

CERTIFAI v’
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Table 1: Related work. Exp. represents explainability. We consider the approaches most similar to ours. Mixed-data means the
method can work with both discrete and continuous data, without any discretization or assumptions.

Additionally, it provides a great deal of flexibility in counterfactual
generation.

CERTIFAT's genetic algorithm solves the optimization problem in
Equation 1 through a process of natural selection. The only manda-
tory inputs for the genetic algorithm are the black-box classifier
f and an input instance x. Generally, for an n-dimensional input
vector x, let W € R” represent the space from which individuals
can be generated and P be the set of points with the same prediction
as x:

P={plf(p) = f(x).pe W} @
The possible set of individuals ¢ € I are defined such that
I=W\P. 3)

Each individual ¢ € I is a candidate counterfactual. The goal is to
find the fittest possible ¢* to x constrained on ¢* € I. The fitness
for an individual c is defined as:

fitness = @ 4)
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Here ¢* will then be the point closest to x such that ¢* € I. For a
multi-class case, if a user wants the counterfactual ¢ to be belong
to a particular class j, we define Q as:

Q=1{qlf(@=jqe W} ()
Then Equation 3 becomes:
I=W\P)no. (6)

The algorithm is carried out as follows: first, a set I is built by
randomly generating points such that they belong to I. Individ-
uals ¢ € I, are then evolved through three processes: selection,
mutation, and crossovers. Selection chooses individuals that have
the best fitness scores (Equation 4). A proportion of these indi-
viduals (dependent on py,, the probability of mutation) are then
subjected to mutation, which involves arbitrarily changing some
feature values. A proportion of individuals (dependent on p., the
probability of crossover) are then subjected to crossover, which
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involves randomly interchanging some feature values between in-
dividuals. The population is then restricted to the individuals that
meet the required constraint (Equation 3 or Equation 6), and the
fitness scores of the new individuals are calculated. This is repeated
until the maximum number of generations is reached. Finally, the
individual(s) ¢* with the best fitness score(s) is/are chosen as the
desired counterfactual(s)>.

Note that while there is no guarantee that the globally maxi-
mum fitness point will always be obtained due to the nature of
meta-heuristics, this will also be the case for any practical approach
that needs to cater to arbitrary, non-convex black-box models and
arbitrarily complex decision-surfaces in high-dimensional feature
space. In fact alternative approaches to finding counterfactuals fur-
ther compromise on quality in the quest for simplicity. For example,
Google’s what-if tool [8] restricts a counterfactual to be an actual
data-point in the training set, which also runs the risk of privacy
violation since the counterfactual cannot be a simulated point.

3.2 Choice of distance function

The choice of distance function used in Equation 1 depends on the
details provided by the model creator and the type of data being
considered. If the data is tabular, [15] demonstrated how the L;
norm normalized by the median absolute deviation (MAD) is better
than using the L; or Ly norm for counterfactual generation. For
tabular data, the L1 norm for continuous features (NormAbs) and
a simple matching distance for categorical features (SimpMat) are
chosen as default. In the absence of training data, normalization
using MAD is not possible. However in model development and our
experiments where there is access to training data, normalization
is possible. The distance metric used is:

d(x, ¢) = NormAbs(x, ¢) + SimpMat(x, c) (7)

For image data, the Euclidean distance and absolute distance
between two images are not good measures of image similarity
[16]. Hence, we use SSIM (Structural Similarity Index Measure)
[17], which has been shown to be a better measure of what humans
consider to be similar images [16]. SSIM values lie between 0 and
1, where a higher SSIM value means that two images look more
similar to each other. For the input image x and counterfactual
image c, the distance is:

1

d(X, C) = m

®)

3.3 Improving counterfactuals with constraints

Optionally, a CERTIFAI user can provide three different kinds of
constraints that help make the counterfactuals more realistic: 1)
Muting features: For example, if a user cannot change their educa-
tion level, they can mute that feature; 2) Feature range: For example,
it might be difficult for a user to drastically increase their income to
be approved for a loan, so an income range can be specified; 3) Num-
ber of explanations: CERTIFAI can generate multiple counterfactual
explanations in a single run of the algorithm. To receive a set of

3pm=0.2 and p.=0.5, which is standard in literature. The population size is the square of
the input feature size with a maximum cap of 30,000 for the datasets we experimented
on. Grid-search is used to find the number of generations
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recourse options, a user can specify how many such explanations
to generate.

These auxiliary constraints are incorporated by restricting the
space defined by the set W: the space from which individuals can be
generated, to ensure feasible solutions. For an n-dimensional input,
let W be the Cartesian product of the sets Wy, W,..,W,,. For contin-
uous features, W; can be constrained as W; € [Wimin, Wimax|, and
categorical features can be constrained as W; € {Wy, Wa, ..., W;}.
However, certain variables might be immutable (e.g., race). In these
cases, a feature i for an input x can be muted by setting W; = x;. If
the constraints are too tight, CERTIFAI generates no solution and
asks the user to expand the possible range values for features.

3.4 Robustness Analysis

Machine learning models are prone to attacks and threats. For ex-
ample, deep learning models have performed exceedingly well for
image recognition tasks, but it has been widely shown [6, 11] that
these networks are prone to adversarial attacks. Two images may
look the same to a human, but when presented to a model, they can
produce different outcomes. A counterfactual is a generated point
close to an input that changes the prediction and can, therefore, be
considered an adversarial example. Using this notion of counterfac-
tuals as adversarial examples, we define CERScore and NCERScore,
which are the first ever black-box model robustness scores. These
scores are a direct consequence of the distance between the input
and counterfactual points.

Specifically, given two black-box models, if the counterfactu-
als across classes are farther away from the input instances on
average for one model as compared to the other model, that first
model would be harder to fool. Since CERTIFAI directly gives a
measure of distance d(x,c), this can be used to define the robustness
score for a classifier. Using this distance, we introduce Counterfac-
tual Explanation-based Robustness Score (CERScore), the first ever
black-box model robustness score. Given a model, the CERScore is
defined as the expected distance between the input instances and
their corresponding counterfactuals:

CERScore(model) = ;E;,[d(x, ¢ )

To be able to better compare models trained on different data
sets, the CERScore can be normalized by the expected value of the
distance between data points in each class over all classes k, and
hence we get the normalized CERScore NCERScore (abbreviated as
NC) as:

Ex[d(x, c*)].

€= 10
S r_y Px € classg)E[d(xi, x)); X1, xj € classy] (10)

(i.e., we normalize by dividing by the expected distance between
two datapoints drawn from the same class). A higher CERScore
implies that the model is more robust. Note that the normalized
CERScore can be greater than 1. Unlike [18], CERTIFAI only needs
model predictions and not the model internals.

3.5 Fairness Analysis

The fitness measure (Equation 4) and CERScore can additionally
be used to investigate fairness from individual and group perspec-
tives, respectively. CERTIFAI can be used by model developers to
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Model CERScore CI CLEVER
Inception-v3 1.17 1.09-1.25 0.229
Resnet-50 1.06 1.05-1.08 0.137
MobileNet 1.08 1.06-1.09 0.151

Table 2: Robustness score and 95 percent confidence inter-
vals (CI) for those scores for 3 deep learning models and the
corresponding CLEVER scores.

audit the fairness for different groups of observations. If the fitness
measure is markedly different for counterfactuals generated for
the different partitions of a feature’s domain value, this could be
an indication the model is biased towards one of the partitions or
groups. For example, if the gender feature is partitioned into two
values (men and women), and the average fitness values of gener-
ated counterfactuals are lower for women than for men, this could
be used as evidence that the model is not treating females fairly.
Using counterfactuals and the distance function, we can calculate
the overall burden for a group, measured as:

Burden(g) = ]sf,[d(x, ¢ (11)
where g is a partition defined by the distinct values for a specified
feature set. Note that burden is related to CERScore as it is the
expected value over a group. Burden can be considered to be a
nuanced version of other fairness measures (such as demographic
parity), as with burden, the score assigned to every group is a
weighted version of the proportion of individuals in the negative
class of that group, where the weight is dependent on the distance
to the boundary.

4 EXPERIMENTS

4.0.1  Evaluating Deep Networks. In this section, we evaluate how
well CERScore can give an informative measure of robustness. We
consider the same networks as in [18] (Inception-v3, ResNet-50
and MobileNet, pre-trained on ImageNet) where they define the
CLEVER score for robustness. Unlike CLEVER, we consider the
model to be a black-box (only relying on its predictions).

Ideally, to derive a measure of robustness for a model, all images
from all classes should be considered, their counterfactuals should
be generated, and the CERScore should then be calculated. However,
since the number of training samples for a deep network is in the
order of millions, it is not computationally feasible to calculate
the score for each example. Hence, we consider a subset of classes
and images to calculate the CERScore. We sampled n=50 random
images from every class across k=100 random classes. We generate
the counterfactuals for all 5,000 images such that the counterfactual
gives a prediction of the second most likely class (by generating
individuals constrained on belonging to that class as in Equation 6)
and empirically estimate the CERScore as:

n

k
1 *
CERScore = p ; ]; d(xj, <

(12)

where x;; is the j’ h input instance belonging to predicted class i,
and c’;.‘j is the corresponding counterfactual. The CERScores along
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with the 95% confidence intervals, where we have assumed the dis-
tribution of distances between the images and their counterfactuals
follows a normal distribution, are shown in Table 2. One way to
interpret the score is that on average, the SSIM score for Inception-
v3 is 1/1.17 = 0.85, where an SSIM score of 1 means the images
look exactly the same and an SSIM score of 0 means the images are
highly different. Hence, adversarial attacks for Inception-v3 could
be more easily identified than for the other models. The confidence
intervals are tight around the CERScores.

Table 2 also shows the CLEVER scores [18] for the same im-
ages, considering the top-2 class attack. The CERScore implies that
Inception-v3 is most robust and Resnet-50 is least robust, which is
similar to what the CLEVER scores suggest. Hence, even though
CERTIFAI does not access any model weights, it is able to evaluate
a model’s robustness to adversarial attacks.

4.0.2 Robustness of Classic Classifiers. Next, we use NCERScore
(Equation 10) to compare the robustness of different models trained
on different data sets. We train three models (decision trees (DT),
Support Vector Machines with RBF kernel (SVM), and multilayer
perceptrons (MLP)) on the three data sets listed in Table 3. We report
the NCERScore and the accuracy on the test set in Table 3. Across
all data sets, the neural network has the highest NCERScore and is
therefore the most robust of the classifiers for these data sets. In the
Pima diabetes data set, the accuracy of the decision tree is much
lower than the other models, which suggests this simple model
cannot adequately capture the class separation. Hence, more points
would be concentrated near the decision boundaries, resulting in
a lower NCERScore. For the Iris data set, all models have similar
accuracy, but the decision tree has the lowest NCERScore while the
scores for SVM and MLP are similar.

4.1 Explainability

Counterfactuals are used to provide explanations and transparency
to a user on how much change is needed for them to obtain a
favorable prediction. We show example counterfactual explanations,
the effect of constraints, and how they can be used to measure
feature importance. Some other approaches would not be viable to
perform similar experiments: since the UCI Adult dataset contains
many categorical variables, finding a counterfactual using [15]
would not be feasible and using [14] would only allow for linear
models, while we consider neural networks as well. Additional
experiments on explainability are given in the appendix.

4.1.1  Multiple Counterfactual Explanations. Multiple explanations
are helpful to a user so that they can receive a diverse set of changes
that could be made to achieve a desired outcome. The UCI adult
dataset is considered and features such as native-country are muted
and a set range is given for features like hours-per-week (based
on the min-max of the dataset). We run the genetic algorithm for
the input instance and select the best two individuals that have
different changes in feature indices. The advantage of our approach
is that we only need to run the algorithm once to generate many
explanations, as opposed to [13] where the solver needs to be run
multiple times to generate many explanations.

To underscore the benefits of suggesting alternative counterfac-
tuals, Table 4 shows two sets of explanations that are generated by
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Data set Num. Num. DT SVM MLP

obs. features NCERS. Acc. NCERS. Acc. NCERS. Acc.
Pima Diabetes 768 8 0.074 73.25 0.387 81.42 0.486 98.61
Breast Cancer 569 32 0.081 95.80 0.121 96.50 0.124 96.50
Iris 150 4 0.132 95.67 0.235 95.67 0.241 95.67

Table 3: Descriptions of data sets, and NCERScore (NCERS.) and test set accuracy (Acc.) for three models: decision tree (DT),
SVM with RBF kernel (SVM), and Multilayer Perceptron (MLP).

Person Feature(s) Original Counterfactual
1 Education 12th Bachelors
Occupation Tech-suppt Exec-managerial

1 Hrs-per-week 50 70
Workclass  Local-gov Private

Table 4: Two explanations for the same person from the UCI
adult dataset, with constraints on feature values.

CERTIFAI for the same person. The number of explanations can be
set by the user, and they can decide which counterfactual may be
the most actionable for them.

4.1.2 Importance of constraints. We consider two cases of coun-
terfactual generation, counterfactuals with constraints (CWC) and
counterfactuals unconstrained (CUC) for two users with a predic-
tion of high diabetes risk from the Pima Indian diabetes dataset.
CWC corresponds to a user or model creator providing a range of
values for features. CUC corresponds to a user only providing the
black-box model and the input instance without any constraints
on the feature values. We show features for which the values have
changed (between the input and counterfactual), all other values
remained constant.

As shown in Table 5, for person 1, when we provide constraints
(CWCQ), the explanation is: Had your glucose been less by 34, you
wouldn’t have been at the risk of diabetes. All other feature values for
the user remained constant. Without constraints, the explanation
shows that the BMI would have to be decreased to 10.1. While this
is a smaller change in magnitude as compared to changing the
glucose level, achieving a BMI of 10.1 is not feasible, and hence it is
important to use the flexibility of our approach to add additional
constraints that ensure feasibility. Similarly, for person 2, age is
suggested to be changed, which is not feasible.

4.1.3  Measuring Feature Importance. From a model developer’s
perspective, counterfactuals can show the importance of every
feature value to the prediction and hence provide transparency. If
CERTIFAI is changing a particular feature more often than another
feature when comparing the input and counterfactual, it implies
that that feature is more significant for a model.

For the Pima Indian diabetes dataset, we generate counterfactuals
for all samples (irrespective of prediction) and analyze the number
of times every feature value has changed, as shown in Figure 3.
Interestingly, the importances are qualitatively similar to those

171

Person Feature(s) Original Counterfactual
1 Glucose (CWC) 115 71
BMI (CUC) 353 10.1
2 Glucose (CWC) 168 89
Age (CUC) 34 44

Table 5: Counterfactual explanations for the Pima Indian
diabetes dataset. CWC: counterfactuals with constraints on
feature values and CUC: unconstrained counterfactuals. Un-
constrained features lead to infeasible solutions (BMI 10.1)
or unchangeable features (age) being changed.

CERTIFAI

XGBOOST

0.25

Feature Importance
Feature Importance

123 45867 8
Feature

123 4567 8
Feature

Figure 3: Feature importance for the model, trained on the
Pima Indian diabetes dataset, measured by the number of
times a feature changed to generate the counterfactual (left)
and feature importance by XGBoost (right).

returned by Python’s XGBoost [7] library (also shown in Figure 3).
Specifically, feature 5 (BMI) and feature 2 (Glucose) are the most
important in predicting diabetes risk. This analysis can be extended
to the multi-class case by constraining sampled individuals such
that they belong to a desired class (Equation 6).

4.2 Fairness

A model developer can use the idea of burden (Equation 11) to
evaluate how fair a model is being to groups of individuals. To
demonstrate the idea of burden, we consider the attribute race in
the UCT adult dataset and take all training examples that have an
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Figure 4: Burden on different groups belonging to a particu-
lar race in the UCI adult dataset, found using the distance be-
tween the input instances and counterfactuals (Equation 11)

unfavorable outcome. The results of our experiments are shown
in Figure 4. As we can see, the burden when the race is Black
and the race is Other is more than the other races. This means
that on average, these groups would have to make more changes
to achieve a desired prediction as compared to others. Hence the
model imposes a greater burden on these groups, which could imply
that the model has been unfair.

5 CONCLUSION AND FUTURE WORK

In this paper, we introduced CERTIFAL a model-agnostic, flexible,
and user-friendly technique that helps build responsible artificial
intelligence systems by providing explainability to its users and
evaluations of robustness and fairness. We demonstrate the flexi-
bility that the genetic algorithm brings to provide feasible counter-
factual explanations to a user and how to use them to understand
important features. We show how fairness can be measured using
the fitness values obtained during the counterfactual generation
process. Finally, we define CERScore and NCERScore by drawing a
relation between counterfactuals and adversarial examples, which
can be used to compare the robustness of different models.

We have developed a User-Interface to CERTIFAI and are cur-
rently testing it. While the notion of burden is in keeping with
other group fairness measures in terms of the results we obtained
for the Adult dataset and the results in [4], a formal comparison
between burden and previous group fairness metrics would also
be useful. Moreover, we would like to compare the counterfactual
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explanations to other techniques of explainability by conducting a
user-study.
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