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ABSTRACT
The ethical concept of fairness has recently been applied in machine
learning (ML) settings to describe a wide range of constraints and
objectives. When considering the relevance of ethical concepts to
subset selection problems, the concepts of diversity and inclusion are
additionally applicable in order to create outputs that account for
social power and access differentials. We introduce metrics based
on these concepts, which can be applied together, separately, and
in tandem with additional fairness constraints. Results from human
subject experiments lend support to the proposed criteria. Social
choice methods can additionally be leveraged to aggregate and
choose preferable sets, and we detail how these may be applied.

CCS CONCEPTS
• Information systems→ Information retrieval diversity; Eval-
uation of retrieval results.
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INTRODUCTION
In human resource settings, it is said that diversity is being invited
to the party; inclusion is being asked to dance [26]. Although dif-
ficult to define, such fundamentally human concepts are critical
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in algorithmic contexts that involve humans. Historical inequities
have created over-representation of some characteristics and under-
representation of others in the datasets and knowledge bases that
power machine learning (ML) systems. System outputs can then
amplify stereotypes, alienate users, and further entrench rigid so-
cial expectations. Approximating diversity and inclusion concepts
within an algorithmic system can create outputs that are informed
by the social context in which they occur.

In management and organization science, diversity focuses on
organizational demography; organizations that are diverse have
plentiful representation within race, sexual orientation, gender,
age, ability, and other identity aspects. Inclusion refers to a sense
of belonging and ability to function to one’s fullest ability within
organizations [25, 27, 29, 31]. In sociology, one strain of research
assesses the efficacy of diversity programs within firms, studying
how well particular human resources interventions – such as men-
toring, anti-bias training, and shared organizational responsibility
practices – improve employee diversity [12, 19]. Another strain is
skeptical of the concept of diversity and the discursive work that it
performs more broadly within firms and social life. Managers will
often use the language of diversity without making corresponding
changes to promote diverse and inclusive teams [5, 6, 15].

An example of diversity is when people with different genders,
races, and/or ability statuses work together at a job. In this context,
the people belong to different identity groups. These identity groups
are salient insofar as they correspond to systems which afford them
differential access to power, as institutional racism, sexism, and
ableism. An example of inclusion is when wheelchair-accessible
options are available for wheelchair users in a building. Here, the
wheelchair attribute is represented in the design of the building such
that wheelchair users are given similar movement options to those
without wheelchairs. Inclusion, in this case, refers to the ability of
individuals to feel a sense of both belonging and uniqueness for
what their perspective and abilities bring to a team [31].

Building on these concepts, we introduce metrics for diversity
and inclusion based on quantifiable criteria that may be applied in
subset selection problems – selecting a set of instances from a larger
pool. Subset selection is a common problem in ML applications
that return a set of results for a query, such as in ranking and
recommendation systems. While there are many burgeoning sets of
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mathematical formalisms for the related concept of fairness, much
of the work has focused on formalizing anti-discrimination in the
context of classification systems. This has given rise to fairness
criteria that call for parity across various classification error metrics
for pre-defined groups [3]. Such constraints are generally referred
to as “group" fairness, as they request that the treatment of each
group is similar in some measure. In contrast to group fairness,
notions of individual fairness [14] ask that individuals similar for a
task be treated similarly throughout that task.

Some notions of fairness proposed in the ranking and subset
selection literature include considerations that are closely related
to the idea of diversity discussed here [2, 8, 13, 32, 36]. However,
this literature has often conflated fairness and diversity as they are
referred to in other fields such as biology [4, 18, 23] and ecology [21,
34, 35]. Geometric or distance-based measures of diversity have
also been explored within the sciences, measuring the diversity of a
dataset by the dataset’s volume [1, 8, 11, 17, 20, 22, 37], variance as in
PCA [30], or other measures of spread. The notion of heterogeneity
more closely matches such proposals, as they do not explicitly refer
to features with societal import and context.

Our work intentionally differentiates the concept of diversity
from variety or heterogeneity that may hold of a set, where diversity
focuses on individual attributes of social concern (see the back-
ground section), and heterogeneity is agnostic to specific social
groups. As we discuss in this work, a diversity metric can prioritize
that as many identity characteristics as possible be represented in
a subset, subject to a target distribution. If the target distribution is
uniform (i.e., equal representation), this is similar to demographic
parity in fairness literature [14], where similar groups have similar
treatment. Although group-based fairness constraints may apply
in this setting, such constraints would be asking that all groups be
represented equally. The proposed diversity metrics allow for more
control over the specification of the distribution of groups.

Contrasted with the numerous definitions of diversity and fair-
ness, measurements of inclusion have received relatively little con-
siderationwithin computer science.We define ametric for inclusion,
taking inspiration from works in organization science and notions
of individual fairness. To summarize our contributions:

(1) We propose metrics for diversity and inclusion, relating these
concepts to their corresponding social notions.

(2) We focus on the general problem of selecting a set of in-
stances from a larger set, formalizing how each set may be
scored for diversity and inclusion.

(3) We demonstrate how methods from social choice theory can
be used to aggregate and choose preferable sets.

Results from human subject experiments suggest that the pro-
posed metrics are consistent with social notions of these concepts.

BACKGROUND AND NOTATION
Subset selection is a fundamental task in many algorithmic systems,
underpinning retrieval, ranking, and recommendation problems.
We formalize the family of diversity and inclusion metrics within
this task. Fix a query q ∈ Q , and a set of instances in the domain of
relevance Zq . 1

1We intentionally conflate queries and query intents in this work, and assume that
queries closely capture a user’s intent.

Given a set of instances Xq ⊂ Zq and instances xq ∈ Xq , each
instance xq may have multiple objects or items relevant to the
query, e.g., people or shoes. We denote these relevant objects by
xq,i . All proposed metrics can act upon instances xq or sets Xq .

Let a refer to an attribute of a person or item indexing a corre-
sponding group type, such as age:young. Here, the attribute young
indexes its corresponding group type age. a ∈ A defines the set of
attributes to measure for a given instance of set. With some abuse
of notation, we define a({p}) as a function that indicates whether
individualp has attribute a. For example, this might take the form of
an indicator function. We define a({x}) as a function that indicates
the relevance of attribute a within x . For example, this might take
the form of an indicator function for whether the instance contains
an item which refers to the attribute. Similarly, we define a(Zq )
as a function of a within Zq , such as the proportion of instances
xq ∈ Zq that contain a. This allows us to quantify the following
concepts for instances or sets:

Heterogeneity: Variety within an instance or set of in-
stances. Amay be any kind of characteristic, where greater
hetereogeneity corresponds to as many attributes a ∈ A in
Xq as possible.
Diversity: Variety in the representation of individuals in
an instance or set of instances, with respect to sociopoliti-
cal power differentials (gender, race, etc.). Greater diversity
means a closer match to a target distribution over socially
relevant characteristics.
Inclusion: Representation of an individual user within an
instance or a set of instances, where greater inclusion corre-
sponds to better alignment between a user and the options
relevant to them in an instance or set.

Throughout, we define p as a set of attributes for an individual,
but note that p does not have to correspond to a specific person;
it may simply be a set of attributes for a system to be inclusive to-
wards. Critically, for the family of diversity and inclusionmetrics
introduced below,A is defined in light of human attributes involved
in social power differentials, such as gender, race, color, or creed.
Power differentials are significant insofar as greater representation
and presence of individuals with marginalized identities can result
in greater feelings of belonging and acceptance and more successful
teams. For example, ifA represents the Gender concept, an attribute
a ∈ Amay be {Gender:female, Gender:male, or Gender:nonbinary}.
A may also be a collection of attributes from multiple different
demographic subgroups, such as {Skin:Fitzpatrick Type 6, Gen-
der:Female}. Further details are provided in the following section.

QUANTIFYING DIVERSITY
Recall the domain of relevance Zq for a query q, and the aim to
quantify the diversity of a set Xq ⊂ Zq . The more diverse a set Xq
is in a domain q, the greater the presence of attributes relevant to
social structures of power and influence a ∈ A are represented in
the set.

Given a set of attributesAwhere each a ∈ A has target lower and
upper bounds on their presence in a(Xq ) ∈ [0, 1] as a quantification
of the presence of a within Xq . The measurement of a(Xq ) as well
as the bounds la and ua are design parameters of our family of di-
versity metrics. Selecting values for each induces a particular metric
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in this family. The lower bound might be defined to implement the
4
5 rule, or require at least population-level frequency of attribute
a within X . Many literatures have adopted their own notions of
diversity (see the introduction). Our formulation bears some re-
semblance to that of [9], who discuss ranking objects subject to
upper and lower bounds. Our work departs from theirs in that for
different choices outlined below, these need not be hard constraints
on the presence of an attribute, and presence need not implement
simple count.

Presence Score. Recall that an instance xq (e.g., a recommended
movie in a set of movie recommendations) is composed of one or
more items (e.g., actors, objects, and settings in the movie). Each
item reflects or indexes different attributes. For example, the actors
reflect attributes such as their gender, age and race; objects similarly
index such attributes, for example, high heels may index the woman
attribute.We define the presence score of an attribute a as a function
quantifying how close the presence a(xq ) is to the target and upper
and lower bounds on the attribute’s presence:

Presencea (xq ) = f (a(xq ), la,ua )

with higher values meaning a is more present in xq .
One natural quantification of the presence of a in xq is the pro-

portion of items within xq reflecting the attribute a. Similarly, one
of the simplest forms that f (·) can take is as an indicator function
that returns a value of 1 when the the proportion of a in xq is at
least la . This approach is equivalent to: Presencea (xq ) = I(1 ≥

a(xq ) ≥ la |xq ). f (·) may also be instantiated as a more complex
function, for example, capturing the distance between a(xq ) and ua .
There also may be settings where the lower and upper bounds are
not hard constraints: some choices of f can return nonzero values
for a(xq ) < [la,ua ], such as when there is an increasing penalty for
going beyond the specified upper bound.

The presence formulation provides information about the con-
tribution of a single attribute to an instance. For each a the form
of f (·), as well as a(·) la,ua , must be specified to define a metric.
Different choices for these values give rise to metrics with different
meaning; what is appropriate for a given task should be considered
carefully by domain experts and a broad set of individuals who use
the technology relying on the set selection.

Using target distributions for scoring sets and instances provides
for additional considerations beyond the parity often afforded by
fairness metrics, such as sets that are closer to real-world distribu-
tions. This also potentially allows for more fluid/nuanced treatment
of group membership, where multiple overlapping group member-
ships within one instance can be accommodated.

Diversity Score. With the presence score defined, we can now
define the diversity of an instance xq as an aggregate statistic of
the attributes in the instance:

DiversityA(xq ) = д(Presencea (xq )), across a ∈ A, where д(·)
can return the minimum, maximum, or average presence value
of the attributes. These standard choices of cumulation functions
are borrowed from social choice theory in economics, and simi-
lar economics-based metrics may be applied to combine presence
scores of many attributes into the single diversity score, for example,
using a function such as maximin [28] reduces to the lowest-scoring

Figure 1: Gender diversity, without inclusion for women,
“construction worker” image domain: Although several gen-
ders and colors are represented (diversity of people), male-
presenting individuals are shown in realistic, modern con-
struction worker situations, while women and other gen-
ders are depicted as historic nostalgia, toys, clipart, or pas-
sive in the event.

attribute a for Presencea (xq ) (see below section on Social Choice
Theory).

The Diversity family of metrics can highlight or prioritize diver-
sity with respect to relevant social groups. For example:

Racial Diversity: many race groups a ∈ A present.
Gender Diversity: many gender groups a ∈ A present.
Age Diversity: many age groups a ∈ A present.

Set Diversity. The formulation for an instance giving rise to a
diversity score naturally extends to a set of instances giving rise to
a diversity score. An example set of images that are Gender Diverse
are shown in Figure 1. We define the cumulative diversity score of a
set Xq as a function of DiversityA(xq ) across xq ∈ Xq . As before,
this can be scored following the social choice theory functions
further detailed below.

QUANTIFYING INCLUSION
We now move towards proposing a family of metrics to measure
inclusion for subset selection. Our proposed inclusion metric cap-
tures the degree to which an individual p is well represented by the
returned set. As an example, an individual looking for hair style
inspiration might query ‘best hairstyles 2019’. In the absence of
additional qualifiers, e.g., those that narrow the query by explicitly
specifying demographic information, an inclusive image set would
be one where the individual sees people with similar hair textures
to theirs in the selected set. We measure the inclusion of a person
(or set of attributes) p along attribute a when selecting Xq from Zq .
We begin by introducing instance inclusion, a measure of how well
an instance xq represents p, and then extend to set inclusion.

Instance Inclusion. As above, we assume an instance xq (e.g., an
image) is composed of one or more items (e.g., different components
of the image). Each item has some relevance to a query q and may
be a better or a worse fit for an individual p along some attribute
a. The inclusion of an instance xq aggregates the relevance and fit
of all items in xq and produces a single measure of that instance’s
ability to reflect p or to meet p’s goals.

Continuing with the example above, an instance can refer to
an image with several subjects, and each subject corresponds to
an item i . A person p may find i to be a good fit along the hair
type attribute if their hair type is similar to p’s. Then, the instance’s
inclusion forp along this attribute combines the fit of all the subjects
i in the instance.
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Relevance of an item. Formally, let rel(i,q) ∈ [0, 1] measure the
relevance of an item i to query q. The relevance score is an exoge-
neous measure of how well an item answers a query, that is, it is
the assumed system metric for the susbet selection task at hand.

Representativeness of an item. Let repa (i,p,q) ∈ [−1, 1] measure
the representativeness of an item i ∈ xq for p and query q along
attribute a. Representativeness measures how well an item aligns
with a user p’s attribute a (e.g., if i has similar hair texture to p and
q refers to hair styles). We allow for representativeness to be both
positive and negative, to capture the idea that an item might be
a positive or negative representation of p, and that this polarity
might depend on q as well as the attribute a.

There are many natural choices for the representativeness func-
tion. For example, if items correspond to people, then a candidate
representativeness function could indicate whether the attribute is
the same for both p and an item:

repa (i,p,q) = I[a({i}) = a({p})].

One could also choose some more complex measure of the match
of i to p along a. One can similarly define a notion of representa-
tiveness for items that are not individuals, if individuals find some
of those items as being well-aligned with their identity along a.

This can express that “similar" individuals along a may make p
feel more included, even if similar values to a would not increase the
diversity score forA = {a}. This captures the idea that the diversity
score measures an abstracted and simplified summary, while the
inclusion score affords a more fluid contextual understanding of
identities.

An instance’s set of items, their relevance, and their representa-
tiveness together may be represented as:

rxq = {(i, rel(i,q), repa (i,p,q))|i ∈ xq ,q}.

We can then define the inclusion of an instance as an aggregate
statistic of the set of items in the instance, their relevance to the
query, and the items’ alignment or match to individual p along a:

Inca (xq ,p,q) = f (rxq ) ∈ [−1, 1].

In the simplest case, each instance xq may contain only one
item (or one relevant item), in which case f might simply report
the representativeness of the single (relevant) item. In the case
where many items in an instance are relevant, f might measure
the median representativeness of the high-relevance items in xq ,
or the maximum representativeness of some item in the instance.

An inclusion score near −1 indicates p finds the instance stereo-
typical; this is similar to the notion of negative stereotypes in repre-
sentation [10] or tokenism [33]. A score near 1 refers to p’s known
attribute a being well aligned in xq . A score near 0 corresponds to
p finding few or no attribute alignments in xq .

Set Inclusion. An instance giving rise to an inclusion score for
p along an attribute a for query q naturally extends to scoring the
inclusion of a set of instances. The cumulative inclusion score of a
set Xq is a function of Inca (xq ,p,q) across the instances in the set:
Inca (Xq ,p,q) = д

(
{Inca (x,p,q)|x ∈ Xq }

)
. In this formulation, the

inclusion score of an instance is comprised of the representativeness
and relevance of items within it, and the inclusion score of a set is
made up of the instances within the set.

Multiple Attribute Inclusion. Another type of cumulative inclu-
sion score ranges over the set of attributes known aboutp, capturing
a holistic sense of inclusion for p rather than one according to a
single attribute. Just as in set inclusion, many natural definitions
of multiple attribute inclusion arise from defining a cumulative
function д(·).

Both instance-based and attribute-based cumulative functions
for Inclusion can leverage social choice theory to return the final
score, as detailed in the Social Choice section below. For example,
in a Nash Welfare Inclusivity approach for Set Inclusion, д(·) would
return the geometric mean over Inca (x,p,q) for x ∈ X . In a Nash
Welfare Inclusivity approach for Multiple Attribute Inclusion, д(·)
would return the geometric mean over Inca (x,p,q) for a ∈ A.

Inclusion Metrics Discussion
The relevance function rel(, ). We now reflect on the relevance

function in the description of inclusion above. We mention above
that the relevance function measures how well an item corresponds
to a query string q. The objective function for many subset selection
algorithms often measures exactly such a quantity, independent of
inclusion or diversity concerns, though this may only be measured
for an instance xq rather than items in the instance.

However, the ground-truth relevance score of an instance or set
of instances with respect to some q may never be measurable or
even directly defined, and for this reason some simpler proxies are
often used in place of a ground truth relevance score. If one uses
this same proxy score function to define inclusion, this choice may
affect inclusion scores for certain parties more than others due to
unequal measurement error across the space of items and instances.

COMPARING SUBSET INCLUSIVITY:
APPROACHES FROM SOCIAL CHOICE
THEORY
Wehave defined Diversity and Inclusion criteria for single attributes
in single instances, and have briefly discussed how these can be
extended to sets of instances or to sets of attributes. Extending to
such sets requires a cumulationmechanism, which produces a single
score from a set of scores. Here, we can build from social choice
theory, which has well-developed mechanisms for determining a
final score from a set of scored items based on the ethical goals
defined for a system. For example, an egalitarian mechanism [28]
can be used to favor under-served individuals that share an attribute.
A utilitarian mechanism [24] can be used to treat all attributes as
equally important, producing an arithmetic average over items.
Such methods may also be used to compare scores across sets. We
detail three such relevant mechanisms for subset scoring below,
and illustrate these concepts using scores in Figure 2.

Egalitarian (maximin) inclusivity. Set X1 may be said to be
more inclusive than set X2 if the lowest inclusion score in X1 is
higher than the lowest inclusion score in X2, i.e.,

min
i
(X1i ) > min

i
(X2i ).

If mini (X1i ) = mini (X2i ), then repeat for the second lowest scores,
third, and so on. If the two mechanisms are equal, we are indifferent
between X1 and X2.
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User p: Gender:Woman, Skin:Type 6, Age:70
Query q: Scientist

x1 x2 x3 {x1, x2 } {x1, x3 } {x2, x3 }

Inca (, ,)
Incдender :woman (,,) •Woman 1 = 1.00•Woman 1 = 1.00•Woman 1 = 1.00
Incskin:6(,,) • Type 5 5

6 = 0.83• Type 4 4
6 = 0.67• Type 3 3

6 = 0.50
Incaдe :70(,,) • 31 1 − ( 70−31100 ) = 0.61• 23 1 − ( 70−23100 ) = 0.53• 47 1 − ( 70−47100 ) = 0.77
Arithmetic Avg (utilitarian) 0.81 0.73 0.76 0.77 0.79 0.75
Min (egalitarian) 0.61 0.53 0.50 0.53 0.50 0.50
Geometric Avg (nash) 0.79 0.71 0.73 0.75 0.76 0.72

Figure 2:Worked example of Inclusion scores for attributes of each instance xq , given a user p and a query q. Below each image
are the associated attributes (left) and the Inclusion scores for p on this attribute (right). In this example we must select two
images out of the three. Three different methods for aggregating the inclusion scores for attributes are illustrated. The first,
motivated by utilitarianism, takes the average inclusion score for the image pair. The most highest-scoring pair is then the
first and third images. The second, motivated by egalitarianism, takes the minimum inclusion score of the pair. The highest-
scoring pair is then the first and second images. Finally, nash inclusivity chooses the pair with the highest geometric mean,
in this case the same images as in utilitarianism, the first and the third.

Utilitarian inclusivity: This corresponds to an arithmetic av-
erage over the inclusion scores for all items in the set, where a set
X1 is more inclusive than X2 if the average of its inclusion metric
scores is greater.

1
n

∑
i
X2i <

1
n

∑
i
X1i

.
Nash inclusivity: This corresponds to the geometric mean over

the inclusion metric scores for all items in the set. Set X1 is more
inclusive than X2 if the product of its inclusion metric scores is
greater, i.e.

n

√∏
i
X2i < n

√∏
i
X1i

. Nash inclusivity can be seen as a mix of utilitarian and egalitar-
ian inclusivity, as it monotonically increases with both of these
measures [7].

METRICS IN PRACTICE
We assume that Z is a set of instances relevant to the domain of
interest q, such that instances within each selected subset Xq are
relevant according to rel(, ), where a score of 1.0 means that an
instance is relevant to the query.

Prompt Polarity. When applying Diversity and Inclusion metrics
in a domain where the query is not only neutral, but may also be
negative (e.g., “jerks”), it is necessary to incorporate a polarity(q)
value into the score to tease out the ‘negative’ meaning and values
of the inclusion score, as may be provided by a sentiment model.
For example:

repa (i,p,q) = I[a({i}) = a({p})] ∗ λpolarity(q).

Stereotyping. Note that the Xq subset for a given <p, q> pair
can increase the diversity score by producing diverse stereotypes2
unless p and q are well defined. The domain of relevance q is crucial
for understanding whether a set of results might stereotype by a
particular attribute. For example, if q is “work clothing”, and the
set X contains only pink womens’ workwear but a variety of colors
for mens’ workwear, this set could be said to uphold the stereotype
about women and their color preferences, even if the set is diverse
and inclusive for a man. On the other hand, if q is “pink womens’
work clothing”, the same set of womens’ clothing reflects the query
and domain, while in the former case the results overconcentrate a
specific color in the results relevant to women. Stereotyping here
refers to homogeneity across results for attribute a ∈ A.

The person perceiving a set of results X is obviously the arbiter
of whether the results stereotype them. Suppose the person search-
ing for clothing in the previous example is a woman. If she likes
pink workwear, she might feel as though the instances of womens’
workwear being pink suits her goals and needs; if she does not
particularly like pink, even if a majority of women generally like
pink, the results of a search containing only pink womens’ clothing
does not meet her goals, but does reinforce a standard assumption
about womens’ clothing.

Intersectionality. Crossing demographics-based A such as those
based onGender and Race yields intersectionalA that can be applied
in the same manner as unitary A. Without accounting for intersec-
tionality, it is possible for a set of instances to receive high diversity
and inclusion scores without reflecting the unique characteristics of
the individual. For example, if a black woman is searching for movie
recommendations, and the set returned is half movies starring black
men and half movies starring white women, the selection may be
diverse and aligned somewhat with her social identities while still
creating a sense of exclusion.
2Examples of stereotypes intentionally omitted throughout paper in order to minimize
further stereotype propagation.
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Inclusion within Instances. The focus of the family of inclusion
metrics introduced in this paper is inclusion towards the individual
presented with the set. Another aspect of inclusion concerns the
individuals represented in the instances. For example, ifXq contains
people of different ethnicities, all stereotyped except for the one
that authentically represents the ethnicity of the individual, the
proposed metrics will not capture this effect. It may be desirable to
apply the Inclusion metric not only to the individual creating the
query, but also to those who may be represented.

Worked Example
We begin with the context and person creating the query. The
person may be seeking a selection of stock images to use for a
presentation to an unknown-to-them audience. The person has
a token p in the system where they permit information to be
stored, such as their gender and hair color. Assume a specific p:
{gender:female, skin:6, age:70, hair:shortgrey}.3 A generalization
is a list of attributes most at risk for disproportionately unfair expe-
riences, without requiring correspondence to a specific individual.
Inclusiona (x,p,q) scores are shown in Figure 2. Each image xq has
one item i , and for simplicity we assume the given relevance score
for all images rel(i,q) = 1.4 The Inclusion score in this setting is
then:

Inca (xq , p, q) = f (rxq )
= rel(i , q) ∗ repa (i , p, q)
= repa (i , p, q)

Inclusion is here equal to the representativeness score for each
group type (skin, age, hair). Basic instantiations of the repa (i,p,q)
metric may be measures of distance or match:

repдender :p (i , p, scientist) = iдender ≡ pдender

repskin:p (i , p, scientist) = MAX skin −
d (iskin, pskin)
MAX skin

repaдe :p (i , p, scientist) =
d (agei , agep )

MAX age

rephair :p (i , p, scientist) = texturei ≡ texturep∨

lengthi ≡ lengthp∨

colori ≡ colorp∨
stylei ≡ stylep

Figure 2 details inclusion scores for a set of images Xq given the
person p described above. Applying the Diversity criteria above,
with Presence scored by an indicator function, each image x has a
Diversity score of 0, because each attribute has only one form in
each image (e.g., a single person is present). The image set Xq is
also not Gender Diverse.

IMAGE SET PERCEPTION STUDY
Overview
To evaluate the viability of our proposed metrics, we conducted
surveys on Amazon’s Mechanical Turk platform, asking respon-
dents to compare the relative diversity and inclusiveness of sets of
images with respect to gender and skin tone.

To do this, we curated several stock image sets containing people
depicting specific occupations, listed in Table 1. These sets were
designed to be diverse and/or inclusive as outlined in this paper.
Specifically, we curated four sets of images: a set that was diverse

3skin:6 refers to Fitzpatrick Skin Type 6 [16].
4That is, all images are equally relevant to the query.

but not inclusive (D+I-), inclusive but not diverse (D-I+), both in-
clusive and diverse (D+I+), and neither inclusive nor diverse (D-I-).

Respondents were presented with pairs of image sets from a
given occupation and asked to select which was more inclusive or
diverse with respect to a specified demographic—gender or skin
tone—with an option to indicate that both were approximately the
same. At the end of the survey, we also collected information on
rater age and gender5. We scored image sets by simply calculating
the percentage of all comparisons where the image set “won” (i.e.
was selected as the more diverse or inclusive set).

Table 1: Occupations in study

computer programmer scientist doctor nurse
salesperson janitor lawyer dancer

Results
As shown in figure 3, we found that aggregating across occupa-
tions, D+I+ image sets had the highest average scores for both the
diversity and inclusion comparison tasks, with D+I+ sets receiving
higher diversity and inclusion ratings than the other three condi-
tions (D+I-, D-I+, and D-I-). D-I- sets received the lowest diversity
and inclusion ratings. This suggests, perhaps unsurprisingly, that
there is some overlap in the concepts of diversity and inclusion:
inclusivity adds to the perception of diversity, and vice versa.

Although there is overlap in the perception of the two concepts,
our results also suggest that respondents differentiated between
our metrics of inclusivity and diversity. Specifically, D-I+ stimuli
were labeled as more inclusive than diverse, aligning with the in-
tended diversity and inclusion of the sets. Interestingly, D+I- stimuli
were also labeled as more inclusive than diverse, although the gap
between inclusion and diversity ratings is smaller. These results
indicate that respondents perceive sets with more diversity and
inclusion over a baseline as more inclusive than diverse.

When split by users’ self-identified gender, men tended to rate
D+I- conditions asmore inclusive than diverse, while women tended
to rate these conditions as equally inclusive and diverse. Female
respondents also found the D-I+ sets substantially more inclusive
than diverse, with much less of a difference between diversity and
inclusion scores for the remainder of the sets. This discrepancy un-
derscores the relevancy of the user: the identity of the respondents
impacts perceptions of diversity and inclusion in image sets.

Data Quality
We screened for low-quality responses using three approaches: du-
plicate “confirmation questions”, the use of free-response fields
on a multiple-choice question, and reCAPTCHA. First, each set of
comparisons contained two “confirmation questions”, which were
simply duplicates of earlier questions with images shuffled and
the comparison presented in reverse order. Second, while the sur-
vey had only three available options (“Set A”, “Set B”, and “Same”),
respondents were given a free-response answer box to type their an-
swer. This allowed us to filter for automated responses, as we found
5Our interface also allowed us to collect genders beyond the man/woman binary.
However, due to the small sample size, they are excluded from our analysis.
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Figure 3: Fraction of comparison tasks “won” for each image
group and task.

that a small fraction of the responses were nonsensical (e.g. “No”,
or “Very good”). Finally, respondents had to fill out a reCAPTCHA
form before submitting. Answers with a reCAPTCHA score below
0.5, those whose confirmation questions did not agree, and free-
response answers that could not be resolved into a valid response
were removed. After filtering, we had 491 valid responses, which
contained comparisons between all image sets for each occupation.

DISCUSSION
We have distinguished between notions of diversity and inclusion
and detailed how they may be formalized, applied to the general
problem of scoring instances or sets. This may be useful in subset
selection problems that seek to reflect individuals with attributes
that are disproportionately marginalized, such as when selecting
images of people in a stock photo selection task. Our worked ex-
ample demonstrates how social choice theory can be applied to
compare diversity and inclusion scores across different sets.
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