
“How do I fool you?": Manipulating User Trust
via Misleading Black Box Explanations

Himabindu Lakkaraju

Harvard University

hlakkaraju@seas.harvard.edu

Osbert Bastani

University of Pennsylvania

obastani@seas.upenn.edu

ABSTRACT
As machine learning black boxes are increasingly being deployed in

critical domains such as healthcare and criminal justice, there has

been a growing emphasis on developing techniques for explaining

these black boxes in a human interpretable manner. There has

been recent concern that a high-fidelity explanation of a black

box ML model may not accurately reflect the biases in the black

box. As a consequence, explanations have the potential to mislead

human users into trusting a problematic black box. In this work,

we rigorously explore the notion of misleading explanations and

how they influence user trust in black box models. Specifically,

we propose a novel theoretical framework for understanding and

generating misleading explanations, and carry out a user study with

domain experts to demonstrate how these explanations can be used

to mislead users. Our work is the first to empirically establish how

user trust in black box models can be manipulated via misleading

explanations.

CCS CONCEPTS
• Computing methodologies→Machine learning; •Human-
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1 INTRODUCTION
There has been an increasing interest in using ML models to aid

decision makers in domains such as healthcare and criminal justice.

In these domains, it is critical that decision makers understand

and trust ML models, to ensure that they can diagnose errors and

identify model biases correctly. However, ML models that achieve

state-of-the-art accuracy are typically complex black boxes that
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are hard to understand. As a consequence, there has been a recent

surge in post hoc explanation techniques for explaining black box

models [12, 16–18]. One of the goals of such explanations is to help

domain experts detect systematic errors and biases in black box

model behavior [5].

Existing techniques for explaining black boxes typically rely on

optimizing fidelity—i.e., ensuring that the explanations accurately
mimic the predictions of black box model [12, 17, 18]. The key as-

sumption underlying these approaches is that if an explanation has

high fidelity, then biases of the black box model will be reflected

in the explanation. However, it is questionable whether this as-

sumption actually holds in practice [15]. The key issue is that high

fidelity only ensures high correlation between the predictions of

the explanation and the predictions of the black box. There are sev-

eral other challenges associated with post hoc explanations which

are not captured by the fidelity metric: (i) they may fail to capture

causal relationships between input features and black box predic-

tions [15, 19], (ii) there could be multiple high-fidelity explanations

for the same black box that look qualitatively different [12], and

(iii) they may not be robust and can vary significantly even with

small perturbations to input data [6].

These challenges increase the possibility that explanations gen-

erated using existing techniques can actually mislead the decision

maker into trusting a problematic black box. However, there has

been little to no prior work empirically studying if and how expla-

nations can mislead users.

Contributions.We propose the first systematic study to explore

if and how explanations of black boxes can mislead users. First, we

propose a novel theoretical framework for understanding when

misleading explanations can exist. We show that even if an expla-

nation achieves perfect fidelity, it may still not reflect issues in the

black box model. The key issue is that due to correlations in the

features, explanations can achieve high fidelity even if they use

entirely different features compared to the black box. Second, we

propose a novel approach for generating potentially misleading

explanations. Our approach extends the MUSE framework [12] to

favor explanations that contain features that users believe are rele-

vant and omit features that users believe are problematic. Third, we

perform an extensive user study with domain experts from law and

criminal justice to understand how misleading explanations impact

user trust. Our results demonstrate that the misleading explana-

tions generated using our approach can in fact increase user trust

of by 9.8 times (See Figure 1). Our findings have far reaching im-

plications both for research on ML interpretability and real-world

applications of ML.

Related work. Present work on interpretable ML largely falls into

three categories. First, there are approaches focused on learning
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If Race ≠ African American:
If Prior-Felony = Yes and Crime-Status = Active, then Risky
If Prior-Convictions = 0, then Not Risky

If Race = African American:
If Pays-rent = No and Gender = Male, then Risky
If Lives-with-Partner = No and College = No, then Risky
If Age ≥35 and Has-Kids = Yes, then Not Risky
If Wages ≥70K, then Not Risky

Default: Not Risky

If  Current-Offense = Felony:
If Prior-FTA = Yes and Prior-Arrests ≥ 1, then Risky
If Crime-Status = Active and Owns-House = No and Has-Kids = No, then Risky
If Prior-Convictions = 0 and College = Yes and Owns-House = Yes, then Not Risky

If Current-Offense = Misdemeanor and Prior-Arrests > 1: 
If Prior-Jail-Incarcerations = Yes, then Risky
If Has-Kids = Yes and Married = Yes and Owns-House = Yes, then Not Risky
If Lives-with-Partner = Yes and College = Yes and Pays-Rent = Yes, then Not Risky

If Current-Offense = Misdemeanor and Prior-Arrests ≤ 1:
If Has-Kids = No and Owns-House = No and Prior-Jail-Incarcerations = Yes, then Risky
If Age ≥ 50 and Has-Kids = Yes and Prior-FTA = No, then Not Risky

Default: Not Risky

Figure 1: Classifier which uses prohibited features (race and gender) when making predictions (left); and itsmisleading expla-
nation (right) which excludes prohibited features (race, gender) and includes desired features (prior jail incarcerations, prior
FTA or flight risk). Our user study shows that domain experts are 9.8 times more likely to trust the classifier if they see the
explanation on the right (instead of the classifier). Presence or absence of race and gender drives user trust (see Section 5.2)

predictive models that are human understandable [3, 8, 11, 14].

However, complex models such as deep neural networks and ran-

dom forests typically achieve higher performance compared to

interpretable models [17], so in many situations it is more desir-

able to use these complex models. Thus, there has been work on

explaining such complex black boxes. One approach is to provide

local explanations for individual predictions of the black box [16–

18], which is useful when a decision maker plans to review every

decision made by the black box. An alternate approach is to provide

a global explanation that describes the black box as a whole, typi-

cally summarizing it using an interpretable model [2, 12], which

is useful in validating the black boxes before they are deployed to

automatically make decisions (i.e., without human involvement).

There has been some empirical work on studying how humans

understand and trust interpretable models and explanations. For

instance, Poursabzi-Sangdeh et. al. (2018) show that longer expla-

nations are harder for humans to simulate accurately. There has

also been recent work on understanding what makes explanations

useful in the context of three tasks they are likely to perform given

an explanation of an ML system: (i) predicting the system’s output,

(ii) verifying whether the output is consistent with the explanation,

and (iii) determining if and how the output would change if we

change the input [10].

More closely related to our work, there has been recent work

on exploring the vulnerabilities of black box explanations. For in-

stance, there has been work demonstrating that explanations can

be unstable, changing drastically even with small perturbations to

inputs [4, 6]. Finally, recent work has argued that black box expla-

nations can often be misleading and can potentially lead users to

trust problematic black boxes [6, 15].

In contrast, we are the first to study if and how adversarial

entities could generate misleading explanations to manipulate user

trust. We are also the first to explore the notion of confirmation

bias in the context of black box explanations.

2 PROBLEM FORMULATION
In this section, we introduce some notation and formalize the no-

tions of (i) explanation of a black box model, and (ii) misleading

explanation of a black box model. The preliminaries introduced in

this section will serve as a foundation for our theoretical framework

(Section 3).

Explanations. Given input data X, a set of class labels Y =

{1, 2, · · ·K}, and a black box B : X → Y, our goal is to generate an

explanation E that describes the behavior of B. Then, end users

can use E to determine whether to trust B.
We consider an approach to explaining B by approximating it

using an interpretable model E ∈ E. We measure the quality of this

approximation using the relative error

L(E,B) = Ep(x )[ℓ(E(x),B(x))]

where p(x) is the data distribution and ℓ(y,y′) is any loss function—
e.g., the 0-1 loss ℓ(y,y′) = I[y , y′]. We want to choose an expla-

nation E ∈ E that minimizes the relative error. We also define the

fidelity of E to be 1 − L(E,B).

Trustworthy black boxes & misleading explanations. We as-

sume a workflow where the human user relies on E to decide

whether to trust B. We model the human user as an oracle O :

E → {0, 1} such that

O(E) = I[user trusts black box B given explanation E].

We can compute O via a user study that shows users E and asks if

they trust B. We also assume there is a “correct” choice of whether

B is trustworthy. We model this ground truth as an oracle O∗
:

B → {0, 1}, where B is the space of all black boxes and O∗(B) =
I[B is trustworthy]. An explanation E forB ismisleading ifO(E) ,
O∗(B).

Constructing misleading explanations. Our goal is to demon-

strate that misleading explanations exist. In our approach, we first

devise a black box B that we expect to be untrustworthy. This ex-

pectation is based on which features are used by the model (see

Section 3). Then, we need to check if B is actually untrustworthy

(i.e., O∗(B) = 0). To do so, we choose B to itself be an interpretable

model. Then, we perform a user study where we show B and ask if

it is trustworthy, yielding O∗(B). In this approach, B is still a black

box in the sense that (i) E is constructed without examining the

internals of B, and (ii) users are not aware of the internals of B
when shown E to evaluate O(E).

Next, we construct an explanation E of B that we expect to be

misleading; again, this expectation is based on which features are

in the explanation (see Section 3). Then, we check if E is indeed

misleading (i.e., evaluate O(E)) via a user study. Assuming we suc-

cessfully constructed B so that O∗(B) = 0, then E is misleading
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if O(E) = 1. We discuss how we construct E in Section 4 (B is

constructed similarly), and how we perform the user studies in

Section 5.

3 THEORETICAL FRAMEWORK
We define notions of a potentially untrustworthy black box B and

a potentially misleading explanation E for B. These notions are

only used to guide our algorithms; once we have constructed B and

E, we test whether B is actually untrustworthy and E is actually

misleading via user studies. Finally, we discuss when potentially

misleading explanations exist.

Quantifying user trust. We consider a simple approach to es-

timating whether a user trusts B given E. We assume their key

criterion is which features are included in E and which ones are

omitted. More precisely, we assume the feature space can be de-

composed into X = XD × XA × XP , where XD corresponds to

the desired features D that the user expects to be included, XA
corresponds to the ambivalent features A for which the user is

indifferent about whether they are included, and XP corresponds

to the prohibited features P that the user expects to be omitted.

Next, an acceptable explanation E ∈ E+ ⊆ E is one where

desired features appear in E and the prohibited features do not.

Then, we estimate that user decisions O(E) are based on (i) whether

E is acceptable, and (ii) whether E meets a minimum level ϵ+ ∈ R≥0
of fidelity—i.e., defining

ˆO(E) = I[E ∈ E+ ∧ L(E,B) ≤ ϵ+],

we have estimate
ˆO(E) ≈ O(E). Similarly, for black boxes that

are interpretable, an acceptable blackbox B ∈ B+ ⊆ B is one

where the desired features appear in B and the prohibited features

do not. Then, we estimate that user decisions O∗(B) are based on

whether B is acceptable—i.e., letting
ˆO∗(B) = I[B ∈ B+], we have

ˆO∗(B) ≈ O∗(B). The user studies we perform demonstrate that
ˆO

and
ˆO∗

are good estimates of O and O∗
, respectively; see Section 5.

Now, we say B is potentially untrustworthy if
ˆO∗(B) = 0,

and say E is potentially misleading if
ˆO(E) , ˆO∗(B). Figure 1

shows a potentially untrustworthy blackbox (left) and a potentially

misleading explanation (right).

Existence of potentially misleading explanations. We study

when potentially misleading explanations exist. First, even if an

explanation has perfect fidelity, it can still be potentially misleading:

Theorem 3.1. There exists a black box B and an explanation E of
B such that (i) E has perfect fidelity (i.e., L(E,B) = 0), and (ii) E is
potentially misleading.

Proof. Consider input features XD = XP = R, and there are

no ambivalent features, so X = XD × XP = R
2
, and binary labels

Y = {0, 1}. Furthermore, consider a distribution p((x1, x2),y) over
X ×Y defined by

p((x1, x2),y) = p0(x1) · δ (x2 − x1) · δ (y − I[x2 ≥ 0]),

where p0 = N(0, 1). In other words, x1 is a standard Gaussian

random variable, x1 andx2 are perfectly correlated, and the outcome

is 1 if x2 ≥ 0 and 0 otherwise. Next, consider a black box

B((x1, x2)) = I[x2 ≥ 0],

i.e., B achieves zero loss. Since B uses the prohibited feature x2, it

is probably untrustworthy—i.e.,
ˆO∗(B) = 0. Similarly, consider an

explanation

E((x1, x2)) = I[x1 ≥ 0].

Since this explanation uses the desired feature and not the prohib-

ited feature, it is acceptable; thus, it is probably misleading—i.e.,

ˆO(E) , ˆO∗(B). Finally, note that

L(E,B) = Ep((x1,x2))[ℓ(E((x1, x2)),B((x1, x2))]

= Ep((x1,x2))[ℓ(I[x1 ≥ 0], I[x2 ≥ 0])]

= Ep(x1)

[∫
ℓ(I[x1 ≥ 0], I[x2 ≥ 0]) · δ (x2 − x1)dx2

]
= Ep(x1)[ℓ(I[x1 ≥ 0], I[x1 ≥ 0])]

= 0.

Thus, E achieves perfect fidelity, as claimed. □

This result is for a specific black box and a specific explana-

tion of that black box. Next, we study more general settings where

potentially misleading explanations exist. Let E ∈ E be the best

explanation for black box B. We focus on the case where
ˆO∗(B) = 0

(i.e., the black box is potentially untrustworthy), so E is potentially

misleading if
ˆO(E) = 1. Intuitively, potentially misleading explana-

tions exist when the prohibited features P can be reconstructed from

the remaining ones D ∪ A. In this case, a misleading explanation

can internally reconstruct P using the D ∪A. A potential concern

is that even when P can be reconstructed, it may not be possible

to do so using an interpretable model. We show that an acceptable

interpretable model can reconstruct P as long as (i) an acceptable

black box B+ can reconstruct P and achieve good accuracy, and

(ii) we can explain B+ using an acceptable interpretable model that

achieves high fidelity. Intuitively, we expect (i) to hold when P can

be reconstructed from D ∪ A, and we expect (ii) to hold since an

explanation of B+ should not depend on features not in B+.
We formalize (i) and (ii). For (i), let B+ ∈ B+ be the best ac-

ceptable blackbox. The restriction error is ϵR = L(B+,B). Then, (i)
corresponds to ϵR ≈ 0—i.e., P can be reconstructed fromD∪Awhen

B+ can then achieve loss similar to B by internally reconstructing P .
For (ii), let E ′ ∈ E be the best explanation for B+, and let E+ ∈ E+

be the best acceptable explanation of B+. The acceptable relative
error is the gap in fidelity between these two—i.e.,

ϵA = L(E ′,B+) − L(E+,B+) ≥ 0.

Then, (ii) corresponds to ϵA ≈ 0—i.e., E+ is almost as good an expla-

nation of B+ as E
′
. Intuitively, this assumption should hold since

B+ does not use P , so there should exist a high fidelity explanation

of B+ that does not use P .
Finally, suppose that ϵR , ϵA are small, and that there exists a high

fidelity explanation E ∈ E (which may not be acceptable); then, E+
is potentially misleading:

Theorem 3.2. Suppose O∗(B) = 0; if L(E,B) + 2ϵR + ϵA ≤ ϵ+,
then E+ is potentially misleading.

Proof. First, we have the following decomposition of the rela-

tive error: for any F , F ′, F ′′ : X → Y,

L(F , F ′) ≤ L(F , F ′′) + L(F ′′, F ′).
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This result follows since for any y,y′,y′′ ∈ Y,

ℓ(y,y′) = I[y , y′]

= I[y , y′′ ∧ y′′ = y′] + I[y = y′′ ∧ y′′ , y′]

≤ I[y , y′′] + I[y′′ , y′]

= ℓ(y,y′′) + ℓ(y′′,y′),

so we have

L(F , F ′) = Ep(x )[ℓ(F (x), F
′(x))]

≤ Ep(x )[ℓ(F (x), F
′′(x)) + ℓ(F ′′(x), F ′(x))]

= L(F , F ′′) + L(F ′′, F ′).

As a consequence, we have

L(E,B) ≤ L(E,B+) + L(B+,B)

= L(E,B+) + ϵR .

Next, note that

L(E,B+) ≤ L(E ′,B+) + L(B+,B)

= L(E+,B+) + L(B+,B) + ϵA,

where the first line follows since by definition, E ′ maximizes error

relative to B+ over E ∈ E, and the second line follows by the

definition of ϵA. Now, again by our decomposition of relative error,

we have

L(E+,B+) ≤ L(E+,B) + L(B,B+)

= L(E+,B) + ϵR ,

where the last line follows since relative error is symmetric. Putting

these three inequalities together, we have

L(E+,B) ≤ L(E,B) + 2ϵR + ϵA

≤ ϵ+,

where the second line follows by our assumption in the theorem

statement. Since E+ ∈ E+, by definition of
ˆO, we have ˆO(E+) = 1,

as claimed. □

4 GENERATING MISLEADING
EXPLANATIONS

Our algorithm for constructing misleading explanations of black

boxes builds on the Model Understanding through Subspace Ex-

planations (MUSE) framework [12] by incorporating additional

constraints that enable us to output high fidelity explanations that

include desired features and omit prohibited features.

4.1 Background on MUSE
Given a black box, MUSE produces an explanation in the form of

a two-level decision set, which intuitively is a model consisting of

nested if-then statements where the nesting depth is two. MUSE

chooses an explanation that maximizes two objectives: (i) inter-

pretability: easier for humans to understand, and (ii) fidelity: the

explanation should mimic the behavior of the black box.

Two-level decision sets. A two-level decision set R : X → Y is

a hierarchical model consisting of a set of decision sets, each of

which is embedded within an outer if-then structure.
1
Intuitively,

the outer if-then rules can be thought of as neighborhood descriptors
which correspond to different parts of the feature space, and the

inner if-then rules are patterns of model behaviors within the cor-

responding neighborhood. Formally, a two-level decision set has

form

R = {(q1, s1, c1), · · · , (qM , sM , cM )},

where ci ∈ Y is a label, and qi and si are conjunctions of predicates
of the form “feature ∼ value”, where ∼ ∈ {=, ≥, ≤} is an operator;

e.g., “age ≥ 50” is a predicate. In particular, qi corresponds to the
neighborhood descriptor, and (si , ci ) together represent the inner
if-then rules with si denoting the antecedent (i.e., the if condition)

and ci denoting the consequent (i.e., the corresponding label).

Optimization problem. Below, we give an overview of the objec-

tive function of MUSE. The objective of MUSE is estimated on a

given training dataset D in the context of a two-level decision set

R and a black box B.
First, there are many measures of interpretability—e.g., expla-

nations with fewer rules are typically easier to understand. MUSE

employs seven such measures. The first four measures are the num-

ber of predicates f1(R), the feature overlap f2(R), the rule overlap
f3(R), and the cover f4(R); these four measures are part of the opti-

mization objective. The next three measures are the size д1(R), the
maximum width д2(R), and the number of unique neighborhood

descriptors д3(R); these three measures are included as constraints

in the optimization problem. For further details on the definitions

of these measures, see Lakkaraju et al. [12].

Second, fidelity is measured as before—e.g., the accuracy relative

to B. f5(R) denotes the fidelity of R.
Finally, to construct the search space, frequent itemset mining

(e.g., apriori [1]) is used to generate two sets of potential if condi-

tions (i.e., sets of conjunctions of predicates): (i) ND from which

we can choose the neighborhood descriptors, and (ii) DL from

which we can choose the inner if-then rules. Then, the complete

optimization problem is:

argmax

R⊆ND×DL×C

5∑
i=1

λi fi (R) (1)

subj. to дi (R) ≤ ϵi ∀i ∈ {1, 2, 3}.

The hyperparameters λ1, ..., λ5 ∈ R≥0 can be chosen using cross-

validation; ϵ1, ϵ2, ϵ3 must be chosen by the user.

Optimization procedure. The optimization problem (1) is non-

normal, non-negative, non-monotone, and submodular with ma-

troid constraints [12]. Exactly solving this problem is NP-Hard [7].

Approximate local search provides the best known theoretical guar-

antees for this class of problems—i.e., (k + 2 + 1/k + δ )−1, where k
is the number of constraints and δ > 0 [13].

4.2 Our Approach
We extend MUSE to generate potentially misleading explanations

by modifying the optimization problem (1). In particular, we need

to (i) ensure that none of the prohibited features P (e.g., race) appear

1
The clauses within each of the two levels are unordered, so multiple rules may apply

to a given example x ∈ X. Ties between different if-then clauses are broken according

to which rules are most accurate; see [12] for details.
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in the explanation (even if they are being used by the black box to

make predictions), and (ii) ensure that all the desired features D
appear (even if they are not being used by the black box). Formally,

let ND+ ⊆ ND denote the set of candidate if conditions for

outer if clauses that do not include any prohibited attributes, and

let DL+ ⊆ DL be the analog for inner if clauses. Furthermore,

we also add a term to the objective that measures the number of

features in XD that are part of some rule in R:

coverdesired(R) =
∑
d ∈D

I[∃(q, s, c) ∈ R s.t. d ∈ (q ∪ s)],

where d ∈ D is a desired feature. Maximizing this value will in

turn maximize the chance that every desired attribute appears

somewhere in the explanation.

Together, we use the following optimization problem to construct

candidate misleading explanations:

argmax

R⊆ND+×DL+×C

5∑
i=1

λi fi (R) + λ6 f6(R) (2)

subj. to дi (R) ≤ ϵi (∀i ∈ {1, 2, 3})

where f6(R) = coverdesired(R). The following theorem shows

that as before, we can solve (2) with approximate local search:

Theorem 4.1. The objective (2) is non-normal, non-negative, non-
monotone, and submodular, and has matroid constraints.

Proof. If at least one term in a linear combination is non-normal

(resp., non-monotone), then the entire linear combination is non-

normal (resp., non-monotone). Given that the objective in (1) is

already non-normal (resp., non-monotone), then it follows that

the objective in (2) is likewise non-normal (resp., non-monotone).

In particular, coverdesired computes how many of the desired

features D appear in R. By definition, this value cannot be negative.

Since the objective in (1) is non-negative and coverdesired(R) is
non-negative, the objective in (2) is also non-negative. The non-

monotone property follows similarly. Next, we did not add any new

constraints to (2), and the constraints in (1) are known to follow a

matroid structure. Thus, (2) also has matroid constraints.

Finally, note that coverdesired denotes the number of desired

features that appear in R. This function clearly has diminishing

returns—i.e., more desired attributes will be covered when we add a

new rule to a smaller set of rules compared to a larger set. Therefore,

this function is submodular. Since the objective in (1) is submodular

and coverdesired is submodular, it follows that the objective in

(2) is also submodular since a linear combination of submodular

functions is submodular. □

5 EXPERIMENTAL EVALUATION
Our goal is to evaluate how explanations can affect users’ trust

of a black box. To this end, we first construct a black box and its

explanations. Then, we perform a user study with domain experts

to understand how each explanation affects user trust of the black

box. All of our experiments are performed in the context of a real

world application - bail decisions.

A key aspect of our approach is that the “black box” B that

we construct is itself an interpretable model. This allows us to

evaluate whether B is actually untrustworthy (i.e., O∗(B) = 0) via

Figure 2: Top 5 prohibited (left) and desired features (right),
and number of participants who voted for each one.

user studies.
2
Also, for an explanation E of B, we can check if B

is trusted given only on E (i.e., O(E) = 1). If both of these criteria

hold i.e., O∗(B) , O(E), then explanation E is misleading.

Bail decisions. Our experiments focus on bail decision making, a

high-stakes task. Police arrest over 10 million people each year in

the U.S. [9]. Soon after arrest, judges decide whether defendants

should be released on bail or must wait in jail until their trial. Since

cases can take several months to proceed to trial, bail decisions

are consequential both for defendants as well as society. By law, a

defendant should be released only if the judge believes that they

will not flee or commit another crime. This decision is naturally

modeled as a prediction problem.

We use a dataset on bail outcomes collected from several state

courts in the U.S. between 1990-2009 [12]. This dataset contains

37 features, including demographic attributes (age, gender, race),

personal (e.g., married) and socio-economic information (e.g., pays

rent, lives with children), current offense details (e.g., is felony), and

past criminal records of about 32K defendants who were released on

bail. Each defendant in the data is labeled either as risky (if he/she

either fled and/or committed a new crime after being released on

bail) or non-risky. The goal is to train a black box that predicts these

outcomes to help judges make bail decisions. Explanations of this

black box are needed to help domain experts determine whether to

trust the black box.

Domain experts in user study. We carried out our study with

47 subjects. Each participant is a student enrolled in a law school

at the time of our study. Each participant acknowledged having

in-depth knowledge (16 participants) or at least some familiarity (31

participants) with the bail decision making process. Of the subjects,

27 self-identified as male and 20 as females; 25 are White, 15 Asian,

2 Hispanic, and 5 African American.

We split our study into two phases: (i) First, we reached out

to each of the participants to determine which of the features in

the bail dataset are relevant (i.e., desired) and which ones should

be omitted (i.e., prohibited). We used these insights to construct

our classifier and its explanations (see Section 5.1). (ii) Next, we

performed the key part of our study—we reached out to all the

subjects to understand how/why a particular explanation influences

their trust of the black box classifier.

2
For the user study checking O(E), we do not show users the internals of B , so
their decision of whether to trust B is not affected by the fact that B happens to be

interpretable.
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5.1 Constructing the Black Box and
Explanations

We discuss how we construct our black box (designed to be un-

trustworthy) and its explanations (some of which are designed to

be misleading). We surveyed the domain experts to identify de-

sired and prohibited features, and then used this information to

construct our classifier and explanations. We generate an untrust-

worthy black box B by explicitly including prohibited features and

omitting desired features, and generate misleading explanations for

B by explicitly including desired features and/or omitting prohibited

features.

Identifying prohibited and desired features. We surveyed all

our 47 subjects to identify prohibited and desired features. Each

participant is shown all 37 features in the bail dataset, and is asked

to indicate which ones are relevant and which ones should be

omitted when predicting if a defendant is risky and should not

be released on bail. Figure 2 shows the 5 features (x-axis) ranked
as the most prohibited (left) and the most desired (right) ones by

the participants. It also shows how many participants voted for

each feature (y-axis). Race and gender stand out unanimously as

the top prohibited features; prior jail incarcerations (PJI) and prior

failure to appear (PFTA)
3
are the top desired features. In both cases,

the first two features received significantly more votes compared

to all the other features, so we use race and gender as prohibited

features, and use PJI and PFTA as desired features in all subsequent

experiments.

Black box and explanations. We use the identified prohibited

and desired features to construct our black box and its explanations.

At a high level, our approach is to construct a black box that is

designed to be untrustworthy to the domain experts should they

be familiar with its inner workings, and construct high-fidelity ex-

planations of this black box designed to mislead them into trusting

the black box.

To this end, we randomly shuffle the bail dataset and split it

into train (70%), test (25%), and validation (5%) sets. We employ our

framework with different parameter settings to construct both the

black box and its explanations. We leverage the validation set and a

coordinate descent style tuning procedure similar to that of MUSE

to set the hyperparameters λ1, λ2, ..., λ6 [12].
We first construct a black box B that uses race and gender (pro-

hibited) and does not use PJI and PFTA (desired); thus, B is most

likely untrustworthy to the domain experts should they examine its

internal workings.We use our framework to build B; while designed
to construct explanations, it can be applied to build an interpretable

classifier by replacing the black box labels B(x) (for each x ∈ X)

with the corresponding ground truth label y. We use desired fea-

tures D = {PJI, PFTA} and prohibited features P = {race, gender}.

The resulting black box B, shown in Figure 1 (left), is an inter-

pretable two-level decision set; its accuracy on the held-out test set

is 83.28%.

We then use our framework to construct three different high-

fidelity explanations E1, E2, E3 of B, as follows: (i) E1 does not use
either prohibited features or desired features (i.e., we use P =

3
If a defendant has failed to appear in the past, that means they failed to show up for

court dates and is deemed a flight risk.

Figure 3: Effect of various explanations on user trust of
black box B.

{race, gender, PJI, PFTA} and D = ∅), (ii) E2 uses both prohibited

and desired features—i.e., we use P = ∅ and D = {race, gender, PJI,

PFTA}, and (iii) E3 uses desired features but not prohibited features
(i.e., we use P = {race, gender} and D = {PJI, PFTA}. We show E3
in Figure 1 (right).

A potential concern is that our goal is to study how qualititative

aspects of each explanation (e.g., which features appear) affects

whether a user trusts B; however, the fidelity of an explanation can

also affect user trust. Thus, it is important to control for fidelity

beforehand. To this end, we estimate the fidelity of each explana-

tion on the held-out test set; the fidelities for E1, E2, E3 are 97.3%,
98.9%, and 98.2% respectively. These values are all very similar;

thus, differences in whether the user trusts or mistrusts B must be

due to the structure of the explanations rather than their fidelities.

5.2 Human Evaluation of Trust in Black Box
Next, we performed a user study with the domain experts to under-

stand how our different explanations E1, E2, E3 affect user trust of
the same black box model B.

User study design. We designed an online user study in which

41 of the 47 domain experts that we recruited participated.
4
Each

participant was randomly chosen to be shown either the black

box B (with fidelity 100%) or one of the explanations E1, E2, E3
(with their corresponding fidelities). Including the black box B is

critical since it allows us to estimate the baseline trust O∗(B)—
i.e., whether users trust B if they understand its internals. Each

participant was instructed beforehand that the explanations they

see are only correlational, not causal. Participants were allowed to

take as much time as they wanted to complete the study.

Each participant was asked (i) to answer the following yes/no

question: “Below is an explanation generated by state-of-the-art ML
for a particular black box designed to assist judges in bail decisions.
Based on this explanation, would you trust the underlying model
enough to deploy it?", and (ii) a follow-up descriptive question to

explain why they decided to trust or mistrust the black box.

Results and discussion. Figure 3 shows the results of our user

study. Each of the bars corresponds to either the black box or one

of the explanations (x-axis). We show the corresponding user trust,

4
Remaining 6 participants were used to explore how interactive explanations can affect

user trust.
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measured as the fraction of participants who responded that they

trust the underlying black box—i.e., answered yes to the question

above (y-axis).
As can be seen, only 9.1% of the participants who saw the actual

black box trusted it (blue), establishing our baseline that the black

box is not trustworthy. Next, we discuss users who only saw one of

the explanations of the black box. First, only 10% of the participants

who saw E2 (brown), which includes race and gender as well as PJI

and PFTA, trusted the underlying black box. On the other hand,

70% and 88% of participants who saw E1 (yellow) and E3 (purple),
respectively, trusted the underlying black box. The prohibited fea-

tures race and gender do not appear in E1 or E3; in addition, E3
includes the desired features PJI and PFTA.

These results show that E1 and E3 are misleading users—i.e., they

lead the user to trust a black box, while users find the actual black

box untrustworthy. Since B and E2 both include race and gender,

participants are unwilling to trust the black box in these two cases.

On the other hand, race and gender do not appear in E1 and E3,
and in these cases users are very likely to trust the underlying

black box. These results are in spite of the clear warning we show

to participants saying that the explanations shown are not causal.

Furthermore, participants who see E3 appear to trust the underlying
black box more frequently than those who see E1, most likely since

the desired attributes PJI and PFTA are used by E3.
Finally, we analyzed the reasons participants gave for their re-

sponses. They are consistent with our findings—i.e., user trust ap-

pears to primarily be driven bywhether the race and gender features

appear in the explanation shown.

6 DISCUSSION & CONCLUSIONS
We have performed the first systematic study of whether and how

explanations of black boxes can mislead users and affect user trust,

including a novel theoretical framework for understanding when

misleading explanations can exist, a novel approach for generat-

ing explanations that are likely to be misleading, and an extensive

user study with domain experts from law and criminal justice to

understand how misleading explanations impact user trust. We

find that user trust can be manipulated by high-fidelity, misleading

explanations. These misleading explanations exist since prohibited

features (e.g., race or gender) can be reconstructed based on cor-

related features (e.g., zip code). Thus, adversarial actors can fool

end users into trusting an untrustworthy black box—e.g., one that

employs prohibited attributes to make decisions.

We consider two ways to address this challenge. First, recent

research [12] has advocated for thinking about explanations as an

interactive dialogue where end users can query or explore different

explanations (called perspectives) of the black box. In fact, MUSE is

designed for interactivity—e.g., a judge can ask MUSE “How does

the black box make predictions for defendants of different races

and/or genders?", and it would return an explanation that only uses

race and/or gender on outer if-then clauses. We performed another

user study with 6 domain experts from our participant pool to study

their trust in the underlying black box B when they could explore

various explanations of B using MUSE, and found that only 16.7%

of the participants (1 out of 6) trusted B. This value is much closer

to the baseline trust (9.1%).

Second, there has been recent work on capturing causal relation-

ships between input features and black box predictions [20, 21]. Ex-

planations relying on correlations not only may be misleading [19],

but have also been shown to lack robustness [6], and causal expla-

nations may address these issues.
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