A Human-in-the-loop Framework to Construct Context-aware Mathematical Notions of Outcome Fairness

Mohammad Yaghini (University of Toronto), Andreas Krause (ETH Zürich) and Hoda Heidari (Carnegie Mellon University)

Motivation

Fairness is relative, complex and context-dependent

No single off-the-shelf definition can capture it

How to define a context-aware notion of fairness?

Bringing back human judgement into the decision-making loop

Two-pronged solution:

- 1. Eliciting judgement by pairwise comparison
- 2. Aggregating judgment through a social choice mechanism

Equality of Opportunity (EOP)

Distinguish morally-justifiable (desert) attributes from circumstantial ones.

A utility distribution CDF *F* under policy ϕ satisfies EOP if for all circumstances *c*, *c*' and all desert levels *d*

$$F^{\phi}(. \mid c, d) = F^{\phi}(. \mid c', d)$$

EOP Parameter Estimation

Circumstance. Estimate $\mathbf{c} := \mathbf{z}_p \in \mathbb{R}^k$ for participant p

To what extent do you agree with the following statement?

It is ethically acceptable for the attribute [...] to impact the decision a defendant receives.

Desert. Estimate $d_p = \delta_p \cdot [x, y]$, where d_p is not directly observable. Assuming there exists a linear function $D_p: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}^+$ such that $d_p = D_p(x, y) \) = \delta_p \cdot [x, y]$, we wish to find δ_p

Desert Queries. *Q* pairwise questions about two scenarios $t_1^q = [\mathbf{x}_1^q, y_1^q]$ and $t_2^q = [\mathbf{x}_2^q, y_2^q]$

From an ethical standpoint, between the two decision subjects, who do you believe *deserves* a more lenient decision?

Utility. Similar to desert, estimate $u_p = v_p \cdot [\mathbf{x}, y, \hat{y}]$ with Q pairwise questions about two scenarios $t_1^q = [\mathbf{x}_1^q, y_1^q, \hat{y}_1^q]$ and $t_2^q = [\mathbf{x}_2^q, y_2^q, \hat{y}_2^q]$:

..., who do you think *will benefit more* from their algorithmic decision?

MLE. Find δ_p and $v_p\,$ that maximizes the likelihood of observed desert/utility differences

Preference Aggregation (Social Choice)

Borda Count.

· Feature is circumstantial if most participants agree

 Σ

h

 $\boldsymbol{\theta}$

 $\left(\boldsymbol{\theta}_{p} \right)$

 $\overline{oldsymbol{y}_p}$

 $= 1, 2, \cdots, P$

• δ_p (and v_p) are averaged

Hierarchical Bayesian Model. Joint Parameter Estimation of θ : = society's preference vector

 $\boldsymbol{\theta}_n \sim \mathcal{N}(\boldsymbol{\theta}, \boldsymbol{\Sigma})$ is participant *p*'s

$$\operatorname{argmin}_{\theta_{p},\theta} - \sum_{p} \sum_{q} \log \Phi \left(a^{q} \boldsymbol{\theta}_{p} \cdot \left[\mathbf{x}_{1}^{p,q} - \mathbf{x}_{2}^{p,q}, y_{1}^{p,q} - y_{2}^{p,q} \right] \right)^{-1}$$

s.t. $\| \boldsymbol{\theta}_{p} - \boldsymbol{\theta} \|_{2} \leq \lambda, \| \boldsymbol{\theta}_{p} \|_{2} \leq 1, \| \boldsymbol{\theta} \|_{2} \leq 1$

Experimental Setup

Note: The decision subject differences are marked in blue. If you are unsure about the meaning of any attribute, hold the cursor on it to see a definition.

Study Results (on AMT with 99 participants)

• Mixed opinion on age. Some thought younger people are less in control of their leniency

- EOP performs better in terms of equalizing the utility distributions (instead of pre-defined metrics) across groups
- EOP improves the utility for the whole populations; regardless of desert group

