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Motivation
•Algorithmic fairness approaches are limited to
sensitive attributes at individual level.
•However, Critical Theory motivates the
consideration of structural or macro-properties
to understand social disparities.
•We propose a novel definition of fairness –
‘causal multi-level fairness’ that accounts for
both macro and individual properties to
mitigate unfairness.

Introduction

•Macro-attribute shapes the resources and
opportunities an individual may have, and
algorithms need to mitigate any historical
unfairness (Furze and Savy, 2014).
•Algorithmic fairness approaches have only
considered unfairness due to individual-level
sensitive attributes.
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Figure 1:Proxy (IN) for sensitive attributes (AI)
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Example causal graphs with sensitive variables
represented by red nodes.

Problem Setup
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Figure 3:Macro-level variables, AP (e.g. neighborhood SES),
P (e.g. zipcode), and individual-level ones, AI (e.g. perception
of race), I (e.g. biological factors), affect the outcome Y (e.g.
health outcomes).

Approach

•We assume access to a causal graph representing
the data-generating process and knowledge of
unfair pathways.
•The aim is to remove effects of sensitive variables
along the unfair paths.
•We adopt counterfactual fairness to multi-level
sensitive attributes (Kusner et al., 2017; Chiappa,
2019).
•We identify multi-level path-specific effects (PSE)
along unfair pathways (Shpitser, 2013).
•Fair classifier: Ŷfair = Ŷ − PSE.

Our contribution

A multi-level fairness approach to mitigate unfairness while accounting for macro and individual-level
sensitive attributes.

Results

C Y

R

L

M

A

0.25 0.00 0.25 0.50 0.75 1.00 1.250

1

2

3

4

De
ns

ity

Yfair

Y(a′i)
Y(a′p)
Y(a′i, a′p)

0.0 0.2 0.4 0.6 0.8 1.0
 (PSE Control)

0.2

0.4

0.6

0.8
|Y

a
Y a

′ |

AI

AP

AI, AP

Figure 4:Left: Causal graph for the UCI Adult dataset (Chiappa, 2019), A and M represent the individual-level protected attributes,
sex and marital status, respectively, C is nationality, L is the level of education, R corresponds to working class, occupation, and
hours per week, Y is the income class, unfair paths are represented in green, Center: Density of Ŷ , Right: path-specific unfairness,
|Ŷa − Ŷa′| controlling for the effects of just AI (blue), AP (orange) and both AI, AP (yellow).

Conclusion

•Our work extends algorithmic fairness to account
for the multi-level and socially-constructed nature
of forces that shape unfairness.
•A framework like this can be used to assess
unfairness at each level, and identify the places
for intervention that would reduce unfairness best
(e.g. via macro-level policies versus individual
attributes).
•We illustrate the importance of accounting for
macro-level sensitive attributes by exhibiting
residual unfairness if they are not accounted for.
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