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Summary

Method Opt. Distance 100% Coverage Efficiency Neural Models Qualitative Features Complex Constraints

Our approach ✓ ✓ ✓ ✓ ✓ ✓
MACE [1] ✓ ✓ ✓ ✓ ✓
DiCE [2] ✓ ✓ ✓
Efficient Search [3] ✓ ✓ ✓ ✓ ✓

Notation & Background

Classifier: h : X → IR
Label (e.g., loan approval): h(x) ≥ 0 ⇒ y = +1, h(x) < 0 ⇒ y = −1
Individual/factual observation: xF s.t. h(xF) < 0
Two ways to formulate CFE generation:

Optimization Formulation Verification Formulation

xCFE ∈ argmin
x∈X

dist(x, xF )

s.t. h(x) ≥ 0
x ∈ Plausible

x ∈ Actionable

(1)

∃x.dist(x, xF ) ≤ δ
h(x) ≥ 0

x ∈ Plausible
x ∈ Actionable

(2)

Encoding a ReLU Neural Network (NN) as an SMT formula:
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ϕf(x) =
(z1 = x1 − x2) ∧ (z2 = 2x1 − x3)

∧((ẑ1 = z1 ∧ z1 ≥ 0) ∨ (ẑ1 = 0 ∧ z1 < 0))
∧((ẑ2 = z2 ∧ z2 ≥ 0) ∨ (ẑ2 = 0 ∧ z2 < 0))

∧(z3 = − ẑ1 + ẑ2)

MIP Encodings

For NNs, we adopt a bounded encoding by by Tjeng and Tedrake [4], i.e., for
i ∈ {1, ..., n} (li and ui indicate the lower/upper bounds):

zi = Wiẑi−1 + bi (3a)
δi ∈ {0, 1}ki, ẑi ⩾ 0, ẑi ⩽ ui · δi,

ẑi ⩾ zi, ẑi ⩽ zi − li · (1 − δi)
(3b)

As a preliminary step, a linear approximation of ReLUs from Ehlers [5] replaces
(3b) to compute the lower/upper bounds:

ẑi ⩾ zi, ẑi ⩾ 0, ẑi,j ⩽ ui,j
zi,j − li,j
ui,j − li,j

(4)

These bounds are then placed in (3) to complete an exact MIP encoding.

CFE Generation

Within each iteration of an exponential search that gradually increases the
distance interval, tight bounds of the hidden units are computed.
MIP-SAT: Relies on SMT solving. Removes fixed-state ReLUs from the
SMT formula given their bounds. Verifies the new formula.
MIP-EXP: Relies on MIP solving. Uses the bounds to implement (3) and
optimizes it toward and until flipping the output logit sign.
MIP-OBJ: No exponential search. Uses the distance MIP as the objective,
with a constraint of the output logit being flipped, directly minimizes
distance.
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Figure 2. An iteration of the search

Different qualitative features,
such as diversity, may also be
encoded. For diversity, the fol-
lowing constraints are added
for the i − th CFE to be gener-
ated:

dist(xCFE
1 , xCFE

i ) ≥ δ
. . .

dist(xCFE
i−1 , xCFE

i ) ≥ δ

(5)

Experiments

Setup.
We compare our approaches against MACE [1] and DiCE [2] in various set-
tings on runtime, distance, and coverage. We employ three widely used real-
world datasets from the literature: Adult (d = 51), COMPAS (d = 7), and Credit
(d = 20). We use a two-layer ReLU-activated NN with 10 neurons for most
experiments. While NNs of this scale can sufficiently discriminate between
the classes of the supervised learning task, we also include experiments ex-
ploring the scalablity (deepening or widening of the NN) of our approach
against the opponents. Finally, we show that qualitative features, diversity in
this case, can be encoded within the framework to efficiently generate sets
of CFEs with guarantees
Results.

Figure 3. Full-setting runtime comparison of two-layer ReLU-activated NN with 10
neurons in each layer among our approach and MACE (SAT) [1]. Coverage is perfect
by design. Each setting has been evaluated on 500 instances, however, SAT and
MIP-SAT timed out on some samples. For such cases, only the samples for which all
approaches have successfully finished running are included.

Figure 4. Distance and time comparison against DiCE as a gradient-based
optimization approach. The NN model is same as above. MIP-OBJ coverage is perfect
by design and DiCE coverage is also perfect but slightly dips for Adult dataset (99.6%).
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