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Question:

Are the groups 

treated equally?

FAIR RANKINGS

STATISTICAL PARITY METRICS
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Three major kinds of statistical parity fairness metrics:

Our work is the first comprehensive comparison of these three metric types
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Rank Position

• Item has probability of being in any rank position

• Models many real-world ranking scenarios

• Multiple rankers

• Unbiased click feedback in IR

• Statistical parity metrics evaluated on 

expectations of stochastic rankings

RANKING MATRIX FRAMEWORK EXPERIMENTAL RESULTS
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: Advantage of protected group

fi,j(): Probability object j is in 
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• Propose unified ranking matrix framework for metric evaluation and comparison

• Columns = candidates

• Rows = rank positions 

• i,j-th cell represents probability candidate j is in position i

• Probability represented by function fi,j: [0,1] → [0,1]

• Function of advantage 

•  = 0 implies total disadvantage,  = 1 total advantage
• Advantage with respect to “protected group”

• One group designated as the protected group
• Assumptions: Probability that protected group monotonically 

increasing/decreasing if  greater/less than group proportion 

THEORETICAL ANALYSIS
• We compare the standard statistical parity metrics:

➢ rND, rRD, skew, rKL, expRR, pair

• Surprising result: All metrics besides skew behave 

the same when Assumption 1+2 are met

➢ Proof intuition: Metrics have same minima and 

signs of derivates are equal everywhere

• Optimizing for one metric optimizes for all

• We propose test to determine if theoretical 

assumptions hold for real data

➢ Statistical equivalence to monotonic function

• Simulated rankings with different group sizes

• Results match analysis: all but skew have same minima/slopes

• Key difference: pair treats absolute (dis)advantage equally regardless of 

group size, others won’t flag complete disadvantage minority

➢ Crucial, as fairness evaluation might be most needed for small minority groups
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• Code for experiments, including cases where rankings do not conform to our 

assumptions, available at: 
https://github.com/waltergerych/AIES_2021_Measuring_Group_Advantage


