

FAIROD: Fairness-aware Outlier Detection

Shubhranshu Shekhar, Neil Shah and Leman Akoglu

Introduction

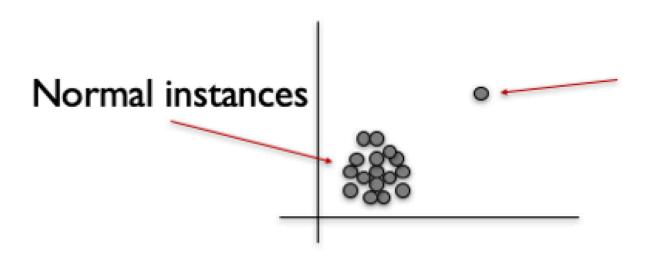
What is an outlier?

Observations that...

- "... inconsistent with the remainder..."
- "... deviate markedly from other members of
- sample in which it occurs"
- [Grubbs '69] • "... deviate so much ... as to arouse suspicions ... they
- were generated by a different mechanism"

[Hawkins '80]

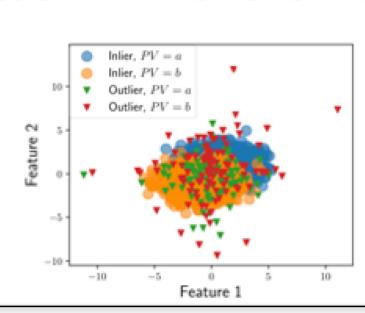
Outlier Detection



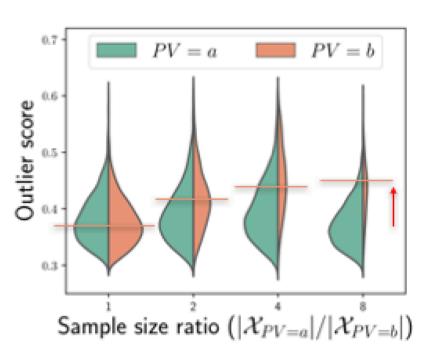
Statistical minority/ sparse, low-density / rare instance / inconsistent with normal observations

- designed to spot/flag rare, minority samples
- e.g. suspicious activity, abnormal heart rate etc.
- facilitates auditing ("policing") by human experts
- · e.g. stop-and-frisk in automated surveillance flagged instances

Bias in Outlier Detection



- Simulated dataset
- equal sized groups
- groups induced by $PV \in \{0, 0\}$



Higher outlier scores as sample size of PV = b is decreased

Bias in Outlier Detection

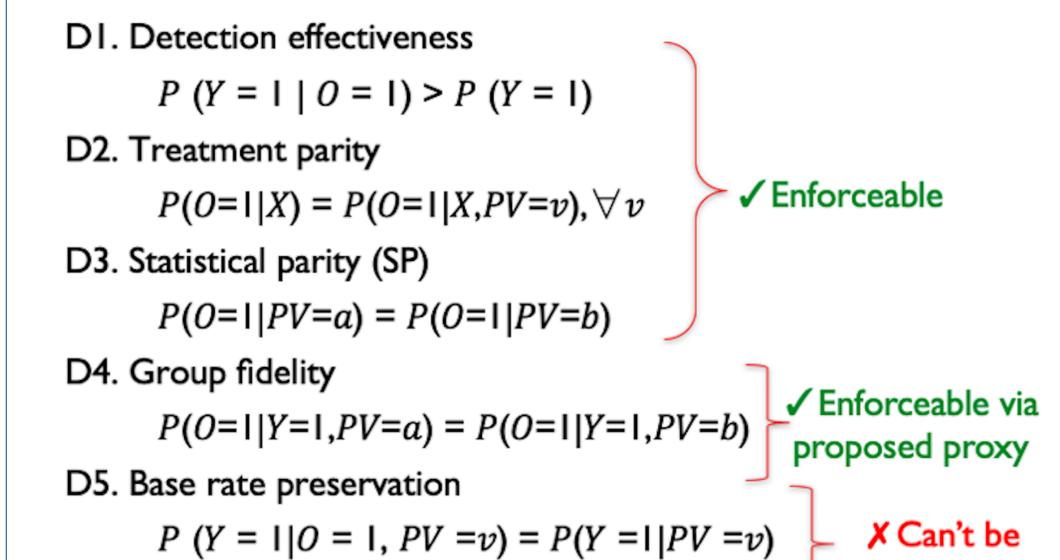
- Societal minorities may be statistical minorities
- defined by protected variable (PV) race/ ethnicity/gender/age etc.
- societal minority ≠ riskiness
- Disparate Impact
- unjust flagging leading to over-policing
- exacerbated by correlated variables with PVs
- feedback loop results in further skewness

Problem

Fair Outlier Detection

- Given:
- \triangleright Observations $\mathcal{X} = \{X_i\}_{i=1}^N \subseteq \mathbb{R}^d$
- $> \mathcal{PV} = \{PV_i\}_{i=1}^N, \ PV_i \in \{a, b\}$
- $> PV_i = a$ identifies majority group
- Build a detector that estimates outlier scores S and assigns outlier labels \mathcal{O} s.t.
- assigned labels and scores are "fair" w.r.t. the PV
- higher scores correspond to higher riskiness encoded by the underlying (unobserved) true labels ${\mathcal Y}$

Proposed Desiderata



SP and Group Fidelity

• SP permits "laziness"

enforced

 $\forall v \in \{a, b\}$



- proxy enforces group-level rank preservation
- · fidelity to within-group ranking from the base model i.e. $\pi_{PV=v}^{BASE} = \pi_{PV=v}; \forall v \in \{a, b\}, \pi \text{ denotes ranking}$
- addresses laziness

Fairness-aware Outlier Detection

Fairness-aware Outlier detection

- Given:
- \triangleright Observations $\mathcal{X} = \{X_i\}_{i=1}^N \subseteq \mathbb{R}^d$
- $> \mathcal{PV} = \{PV_i\}_{i=1}^N, \ PV_i \in \{a, b\}$
- $> PV_i = a$ identifies majority group
- Build a detector that estimates outlier scores S and assigns outlier labels \mathcal{O} to achieve
- P(Y = 1 | O = 1) > P(Y = 1)

 $\pi^{BASE}_{PV=v} = \pi_{PV=v}; \forall v$,

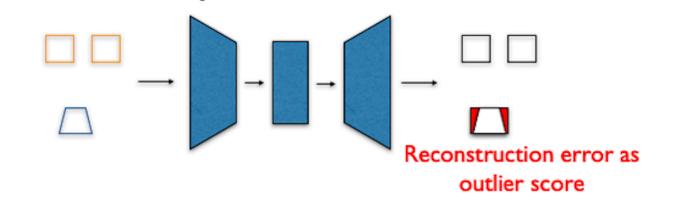
- [DI] [D2]
- P(O=1|PV=a) = P(O=1|PV=b)

 $P(O=1|X) = P(O=1|X,PV=v), \forall v$

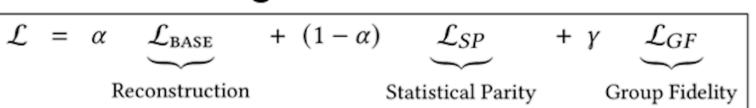
BASE is fairness-agnostic detector

FAIROD

Instantiates deep-autoencoder as BASE detector



Minimizes the regularized loss



Experiments

Datasets

Labels	% outliers	$ \mathcal{X}_{PV=a} / \mathcal{X}_{PV=b} $	PV = b	PV	d	N	Dataset
$\{\text{income} \le 50K, \text{income} > 50K\}$	5	4	female	gender	11	25262	Adult
{paid, delinquent}	5	4	<i>age</i> ≤ 25	age	1549	24593	Credit
{normal, abusive}	5	4	African-American	racial dialect	10000	3982	Tweets
{non-ad, ad}	5	4	1	simulated	1558	1682	Ads
{0, 1}	5	4	1	simulated	2	2400	Synth1
{0, 1}	5	4	1	simulated	2	2400	Synth2

used when ground truth labels

are available

Evaluation Measures

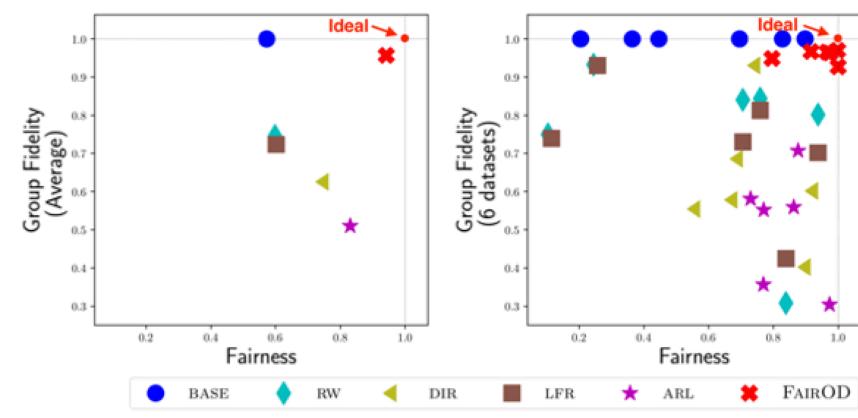
- Fairness = min $\left(r, \frac{1}{r}\right)$, where $r = \frac{P(O=1|PV=a)}{P(O=1|PV=b)}$
- Group Fidelity = $HM(NDCG_{PV=a}, NDCG_{PV=b})$
- Top-k rank agreement = $\frac{|\pi_{[1:k]}^{BASE} \cap \pi_{[1:k]}^{detector}|}{|\pi_{[1:k]}^{BASE} \cup \pi_{[1:k]}^{detector}|}$
- AUC-ratio = $\frac{AUC_{PV=a}}{}$
- AP-ratio = $\frac{AP_{PV=a}}{}$

Baselines

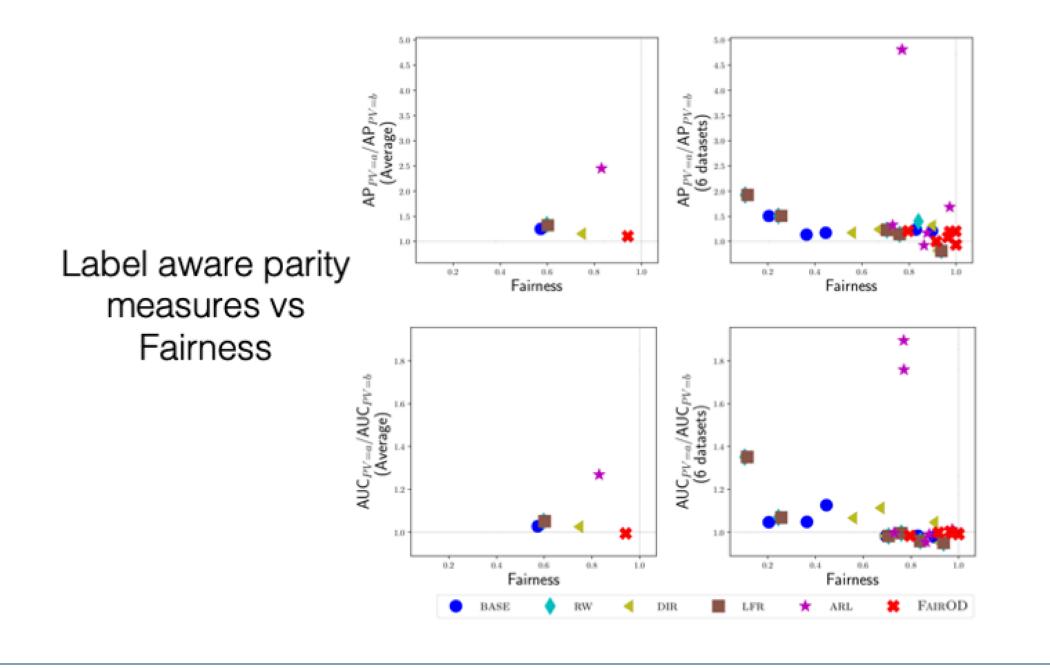
- BASE Deep anomaly detector based on autoencoder
- RW utilizes reweighting to counterbalance underrepresentation of minority group
- DIR edits feature values decorrelateing features and PV
- LFR finds latent representation of the data while obfuscating information about PV
- ARL finds latent representation by employing an adversarial training process to remove PV information

Results

Fairness



Group Fidelity vs Fairness



Fairness-accuracy trade-off

