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QFML Results

Presentation of inaugural results in quantum fair machine
learning (QFML):
• presents fair machine learning in quantum context
• defines quantum statistical parity and quantum
Lipschitz fairness
• demonstrates use of Grover’s amplitude amplification
algorithm to achieve statistical parity for quantum
algorithms Hilbert spaces H = ⊕Hi

Motivation

Quantum computing is a major emerging branch of computing
offering potential exponential increases in computational power.
Classically infeasible (due to resource constraints) computations
may become feasible on a quantum computer & certain in-
tractable problems may be able to be solved:
• as such, the use of quantum algorithms will have ethical
consequences. Fair machine learning, which considers how to
ethically constrain computation is undeveloped for quantum
computing. QFML is therefore well-motivated.
• differences between quantum and quantum computation
mean different techniques must be used to impose ethical
constraints on how computations occur and outcomes.

Quantum Information Processing

The key differences between quantum and classical computation
of relevance to fair machine learning are [1]:
• State space. Quantum systems are described by normalized
vectors in Hilbert spaces |ψ〉 ∈ H. Vectors are usually
two-level qubit systems |ψ〉 = a |0〉 + b |1〉. We also represent
states as density operators ρ = 〈ψ| |ψ〉 .
• Superpositions. Unlike classical bits, the system can be in a
superposition of basis states |0〉 , |1〉 with probabilities
|a|2, |b|2 respectively. a, b ∈ C are called amplitudes.
Information is encoded either in amplitudes or basis vectors.
•Evolution. Quantum systems and vectors evolve unitarily
according to Schrodinger’s equation:

i~
d |ψ(t)〉
dt

= H(t) |ψ(t)〉

•Measurement. Probability distributions for |ψ〉 are obtained
via measurement operators Mi which yield measurements mi

with probability 〈ψ|M †
iMi|ψ〉. After measurement, the

quantum system collapses into post-measurement state,
destroying superpositions. Measurement can partition the
Hilbert space into disjoint subspaces H = ⊕Hi, so can act as
a classifier.

Quantum Fairness

Classification. Meeting a classification criteria is equivalent to
|ψ〉 residing in the subspace Hi corresponding to the measure-
ment operator Mi that yields measurement (classification) mi.
Different fairness criteria are then represented by different mea-
surement operators which partition the Hilbert space H.

Definition: Quantum Fairness

Definition: Quantum Fairness. Given a suitable POVM
{Em} = {M †

mMm}, vectors in H and quantum state |ψ〉 ∈
H (i.e. ρ), the POVM partitions H (and states) into (pos-
sibly disjoint) subspaces Hm ∈ Hm. A state |ψ〉 satisfies
quantum fairness with respect to operators Em that parti-
tion the Hilbert space if |ψ〉 is equally likely to reside in each
subspace Hm, that is:

〈ψ|M †
mMm|ψ〉 = 〈ψ|M †

nMn|ψ〉 m 6= n

tr(ρMm) = tr(ρMn)

This general definition of fairness stipulates that |ψ〉 has an equal
probability of residing within each subspaceHm. Meeting a clas-
sification m is equivalent to |ψ〉 residing in the partition Hm

associated with the measurement operator Em that yields mea-
surement (classification) m.

Definition: Quantum Lipschitz Fairness

Definition: Quantum Lipschitz Fairness. We are given
a set of input states ρi = ρi(t = 0) and unitary quantum
algorithm A(t) evolving the state to output state after time
t given by ρ′i = A(t)†ρiA(t). The quantum equivalent of
input metrics dX and output metrics dY are quantum metrics
DX, DY such as trace distance D(ρi, ρj) = 1

2tr|ρi− ρj|, with
Lipschitz constraint:

DY (ρ′i, ρ′j) ≤ K(DX(ρi, ρj)) (1)
where D is a quantum metric described above, such as trace
distance. Other metrics, such as quantum relative entropy
or comparison of expectation values are also possible (see
paper).

Example: Amplitude amplification for
statistical parity

We basis encode three features of individuals (x1, x2, x3) into
three qubits (see Table 1). Our initial quantum state is an equal
superposition:

|ψ〉 = 1
2n

2n∑
i=1
|xni 〉

We apply a quantum algorithm A that optimises for some ob-
jective. The state evolves to :

|ψ〉 = 2n∑
i=1
ci |xni 〉 ci ∈ C

i (index) x1 (protected) x2 x3 |xni 〉
1 1 1 1 |111〉
2 1 1 0 |110〉
3 1 0 1 |101〉
4 1 0 0 |100〉
5 0 1 1 |011〉
6 0 1 0 |010〉
7 0 0 1 |001〉
8 0 0 0 |000〉

Table 1:Basis encoding for three qubits

After application of quantum optimisation algorithm A, ci are
non-uniform & statistical parity is not met. Statistical parity
based on the first feature requires an equiprobability of outcome
(0 or 1) from measuring the first qubit i.e. we want Pr(|ψ〉 |x1 =
0) ≈ Pr(|ψ〉 |x1 = 1).

We apply amplitude amplification methods [2, 3] which amplify
amplitudes ci of quantum states until statistical parity criteria
are met. To do so we require the existence of an oracle (unitary
operator) that partitionsH = ⊕mHm according to measurement
outcomes (classifications) m (in our case, binary on x1).
We then define normalised states:

|ψ1〉 = 1√
M

∑
x1=1
|xm〉

|ψ0〉 = 1√
N −M

∑
x1=0
|xm〉

Our state |ψ〉 may be expressed using these two states as a basis
such that:

|ψ〉 =
√√√√√√√√√
M

N
|ψ1〉 +

√√√√√√√√√
N −M
N

|ψ0〉

To achieve the amplification sought via a rotation of θ, we define
a unitary operator (so as to preserve quantum coherences and
probability measure) Q(ψ, P ) = SψSχ using the operators:

Sψ = 2 |ψ〉 〈ψ| − I
Sχ = 2P − I

he product of these two reflections is a rotation through Hilbert
space:

|ψ〉 = sin(θ/2) |ψ1〉 + cos(θ/2) |ψ0〉 (2)
We select our oracle as the projector:

P = |1〉 〈1| ⊗ I⊗ I (3)
Applying Q operator k timesthen results in:

Qk |ψ〉 = sin

2k + 1

2
θ

 |ψ1〉 + cos

2k + 1

2
θ

 |ψ0〉 (4)

This has the effect of rotating |ψ〉 by θ (geometrically, counter-
clockwise) so as to increase the amplitude of |ψ1〉. The prob-
ability of measuring a state in H1 (i.e. the probability that
|ψ〉 ≡ |ψ1〉) is then:

Pr(| |ψ1〉 |) = sin2 ([(2k + 1)/2]θ) (5)

By applying Q a sufficient number of times, the probabilities of
measuring a state in H0 and H1 can be approximately equalised.

Figure 1:|ψ〉 is rotated by amplitude amplification to reside equiprobably
withim H1,H2

We use the above procedure to achieve quantum ε-statistical
parity (namely equal probability within ε) such that:

| 〈ψ1|ψ|ψ1〉 − 〈ψ0|ψ|ψ0〉 | = ε (6)
which can be expressed as:

|0.5− ε| = sin2((2m + 1)θ) (7)
Such statistical parity can be approximated by applying the am-
plitude amplification operator Q iterative m times where m is
given by:

m =

arcsin

√√√√(|0.5− ε|)
2θ

− θ
 (8)

Future research: (a) formalising quantum analogues of existing
techniques in FML, (b) exploring QFML in noisy contexts, espe-
cially in dissipative open quantum systems, (c) examining how
fairness outcomes and computation differs as a result of using
quantum-specific resources, such as entanglement and (d) the
role of cryptographic and quantum analogues of differential pri-
vacy for satisfying fairness criteria for quantum computations.
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