QFML Results

Presentation of inaugural results in quantum fair machine learning (QFML):

- presents fair machine learning in quantum context
- defines quantum statistical parity and quantum Lipschitz fairness
- demonstrates use of Grover's amplitude amplification algorithm to achieve statistical parity for quantum algorithms Hilbert spaces $\mathcal{H} = \oplus \mathcal{H}_i$

Motivation

Quantum computing is a major emerging branch of computing offering potential exponential increases in computational power. Classically infeasible (due to resource constraints) computations may become feasible on a quantum computer & certain intractable problems may be able to be solved:

- as such, the use of quantum algorithms will have ethical consequences. Fair machine learning, which considers how to ethically constrain computation is undeveloped for quantum computing. QFML is therefore well-motivated.
- differences between quantum and quantum computation mean different techniques must be used to impose ethical constraints on how computations occur and outcomes.

Quantum Information Processing

The key differences between quantum and classical computation of relevance to fair machine learning are [1]:

- State space. Quantum systems are described by normalized vectors in Hilbert spaces $|\psi\rangle \in \mathcal{H}$. Vectors are usually two-level qubit systems $|\psi\rangle = a |0\rangle + b |1\rangle$. We also represent states as density operators $\rho = \langle \psi | | \psi \rangle$.
- Superpositions. Unlike classical bits, the system can be in a superposition of basis states $|0\rangle$, $|1\rangle$ with probabilities $|a|^2, |b|^2$ respectively. $a, b \in \mathbb{C}$ are called amplitudes. Information is encoded either in amplitudes or basis vectors.
- *Evolution*. Quantum systems and vectors evolve unitarily according to Schrodinger's equation:

$$i\hbar \frac{d \left|\psi(t)\right\rangle}{dt} = H(t) \left|\psi(t)\right\rangle$$

• Measurement. Probability distributions for $|\psi\rangle$ are obtained via measurement operators M_i which yield measurements m_i with probability $\langle \psi | M_i^{\dagger} M_i | \psi \rangle$. After measurement, the quantum system collapses into post-measurement state, destroying superpositions. Measurement can partition the Hilbert space into disjoint subspaces $\mathcal{H} = \oplus \mathcal{H}_i$, so can act as a classifier.

Quantum Fair Machine Learning

Quantum Fairness

Classification. Meeting a classification criteria is equivalent to $|\psi\rangle$ residing in the subspace \mathcal{H}_i corresponding to the measurement operator M_i that yields measurement (classification) m_i . Different fairness criteria are then represented by different measurement operators which partition the Hilbert space \mathcal{H} .

Definition: Quantum Fairness

Definition: Quantum Fairness. Given a suitable POVM $\{E_m\} = \{M_m^{\dagger} M_m\}, \text{ vectors in } \mathcal{H} \text{ and quantum state } |\psi\rangle \in$ \mathcal{H} (i.e. ρ), the POVM partitions \mathcal{H} (and states) into (possibly disjoint) subspaces $\mathcal{H}_m \in \mathcal{H}_m$. A state $|\psi\rangle$ satisfies quantum fairness with respect to operators E_m that partition the Hilbert space if $|\psi\rangle$ is equally likely to reside in each subspace \mathcal{H}_m , that is:

> $\langle \psi | M_m^{\dagger} M_m | \psi \rangle = \langle \psi | M_n^{\dagger} M_n | \psi \rangle \quad m \neq n$ $\operatorname{tr}(\rho M_m) = \operatorname{tr}(\rho M_n)$

This general definition of fairness stipulates that $|\psi\rangle$ has an equal probability of residing within each subspace \mathcal{H}_m . Meeting a classification m is equivalent to $|\psi\rangle$ residing in the partition \mathcal{H}_m associated with the measurement operator E_m that yields measurement (classification) m.

Definition: Quantum Lipschitz Fairness

Definition: Quantum Lipschitz Fairness. We are given a set of input states $\rho_i = \rho_i(t = 0)$ and unitary quantum algorithm $\mathcal{A}(t)$ evolving the state to output state after time t given by $\rho'_i = \mathcal{A}(t)^{\dagger} \rho_i \mathcal{A}(t)$. The quantum equivalent of input metrics d_X and output metrics d_Y are quantum metrics D_X, D_Y such as trace distance $D(\rho_i, \rho_j) = \frac{1}{2} \text{tr} |\rho_i - \rho_j|$, with Lipschitz constraint:

$$D_Y(\rho'_i, \rho'_j) \le K(D_X(\rho_i, \rho_j)) \tag{1}$$

where D is a quantum metric described above, such as trace distance. Other metrics, such as quantum relative entropy or comparison of expectation values are also possible (see paper).

Example: Amplitude amplification for statistical parity

We basis encode three features of individuals (x_1, x_2, x_3) into three qubits (see Table 1). Our initial quantum state is an equal superposition:

$$|\psi\rangle = \frac{1}{2^n} \sum_{i=1}^{2^n} |x_i^n\rangle$$

We apply a quantum algorithm \mathcal{A} that optimises for some objective. The state evolves to :

$$|\psi\rangle = \sum_{i=1}^{2^n} c_i |x_i^n\rangle \qquad c_i \in \mathbb{C}$$

After application of quantum optimisation algorithm \mathcal{A} , c_i are non-uniform & statistical parity is not met. Statistical parity based on the first feature requires an equiprobability of outcome (0 or 1) from measuring the first qubit i.e. we want $Pr(|\psi\rangle |x_1 = 1)$ $0) \approx Pr(|\psi\rangle | x_1 = 1).$

We apply amplitude amplification methods [2, 3] which amplify amplitudes c_i of quantum states until statistical parity criteria are met. To do so we require the existence of an oracle (unitary operator) that partitions $\mathcal{H} = \bigoplus_m \mathcal{H}_m$ according to measurement outcomes (classifications) m (in our case, binary on x_1). We then define normalised states:

Our state $|\psi\rangle$ may be expressed using these two states as a basis such that:

he product of these two reflections is a rotation through Hilbert space:

We select our oracle as the projector:

Applying Q operator k timesthen results in:

Elija Perrier, University of Technology, Sydney & Humanising Machine Intelligence Programme, The Australian National University

x_1 (protected)	$ x_2 $	x_3	$ x_{i}^{n}\rangle$
1	1	1	$ 111\rangle$
1	1	0	$ 110\rangle$
1	0	1	$ 101\rangle$
1	0	0	$ 100\rangle$
0	1	1	$ 011\rangle$
0	1	0	$ 010\rangle$
0	0	1	$ 001\rangle$
0	0	0	$ 000\rangle$
	$egin{array}{ccc} x_1 \ ({ m protected}) \ 1 \ 1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0$	$egin{array}{c c c c c c c c c c c c c c c c c c c $	$egin{array}{cccc} x_1 \ (ext{protected}) & x_2 & x_3 \ 1 & 1 & 1 \ 1 & 0 & 1 \ 1 & 0 & 1 & 0 \ 1 & 1 & 0 & 1 \ 1 & 0 & 0 & 1 & 1 \ 0 & 0 & 1 & 1 & 0 \ 0 & 0 & 1 & 0 & 1 & 0 \ 0 & 0 & 1 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 \end{array}$

Table 1:Basis encoding for three qubits

$$\begin{aligned} |\psi_1\rangle &= \frac{1}{\sqrt{M}} \sum_{\substack{x_1=1 \\ x_1=1}} |x^m\rangle \\ |\psi_0\rangle &= \frac{1}{\sqrt{N-M}} \sum_{\substack{x_1=0 \\ x_1=0}} |x^m\rangle \end{aligned}$$

$$|\psi\rangle = \sqrt{\frac{M}{N}} |\psi_1\rangle + \sqrt{\frac{N-M}{N}} |\psi_0\rangle$$

To achieve the amplification sought via a rotation of θ , we define a unitary operator (so as to preserve quantum coherences and probability measure) $Q(\psi, P) = S_{\psi}S_{\chi}$ using the operators:

$$S_{\psi} = 2 |\psi\rangle \langle \psi| - \mathbb{I}$$
$$S_{\chi} = 2P - \mathbb{I}$$

$$|\psi\rangle = \sin(\theta/2) |\psi_1\rangle + \cos(\theta/2) |\psi_0\rangle$$
(2)

$$P = |1\rangle \langle 1| \otimes \mathbb{I} \otimes \mathbb{I} \tag{3}$$

$$Q^{k} |\psi\rangle = \sin\left(\frac{2k+1}{2}\theta\right) |\psi_{1}\rangle + \cos\left(\frac{2k+1}{2}\theta\right) |\psi_{0}\rangle \qquad (4)$$

This has the effect of rotating $|\psi\rangle$ by θ (geometrically, counterclockwise) so as to increase the amplitude of $|\psi_1\rangle$. The probability of measuring a state in \mathcal{H}_1 (i.e. the probability that $|\psi\rangle \equiv |\psi_1\rangle$) is then:

$$Pr(||\psi_1\rangle|) = \sin^2\left([(2k+1)/2]\theta\right)$$
(5)

withim $\mathcal{H}_1, \mathcal{H}_2$

We use the above procedure to achieve quantum ϵ -statistical *parity* (namely equal probability within ϵ) such that:

which can be expressed as:

Such statistical parity can be approximated by applying the amplitude amplification operator Q iterative m times where m is given by:

Figure 1: $|\psi\rangle$ is rotated by amplitude amplification to reside equiprobably

 $|\langle \psi_1 | \psi | \psi_1
angle - \langle \psi_0 | \psi | \psi_0
angle | = \epsilon$ (6)

$$|0.5 - \epsilon| = \sin^2((2m+1)\theta) \tag{7}$$

$$m = \left| \frac{\arcsin \sqrt{\left(\left| 0.5 - \epsilon \right| \right)}}{2\theta} - \theta \right| \tag{8}$$

Future research: (a) formalising quantum analogues of existing techniques in FML, (b) exploring QFML in noisy contexts, especially in dissipative open quantum systems, (c) examining how fairness outcomes and computation differs as a result of using quantum-specific resources, such as entanglement and (d) the role of cryptographic and quantum analogues of differential privacy for satisfying fairness criteria for quantum computations.

References

Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, 2010. A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual ACM symposium on Theory of Computing, STOC '96, pages 212–219, New York, NY, USA, July 1996. Association for Computing Machinery.

^[1] M.A. Nielsen and I.L. Chuang. [2] Lov K. Grover.

^[3] Lov K. Grover. Quantum Mechanics Helps in Searching for a Needle in a Haystack. *Physical Review Letters*, 79(2):325–328, July 1997.