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Introduction Distance to the Boundary

FaiR-N uses a novel distance to the boundary » Let fy(x) and f4(x) be outputs of the softmax « Results of training a vanilla neural network and
formulatlon in _order tq. - layer of a neural network. The decision FaiR-N for the datasets (UCI Adult, German
- reduce the disparity in the average ability of boundary is defined as: Credit, MEPS):
recourse (i.e. the change needed to get a . B Ty
positive outcome) between individuals in each = {x[fo(x) = fi(x)} Datwset A Trar  Dows  ATPRL  APPR
Adult 0.821+0.002  0.502+0.058  2.16+0.052  0.399+0.033  0.105+0.007
prOteCtEd group . German  0.767+0.007  0.941+0.047 1.43+0.061  0.120£0.058  0.215+0.078
- increase the average distance of data points * The distance to the boundary has been MEPS*  0.848+0.002 0.726+0.044  2.24+0.038  0.104+0.029  0.023+0.007
i roxim : FaiR-N (Ap = g = 0.5)
to the boundary to promOte adversa”al app ° ated as Adult 0.808+0.007 0.968+0.024 2.52+0.178 0.050+0.051 0.017+0.009
robustness. |fo(x) —fl(x)| German!  0.750+0.007  0.946+0.056 1.90+0.061 0.053+0.037 0.082:0.057
d(x,B) = 1Vx fo(x) = Vx fi(x)]| MEPS'  0.838:0010 095420028 325:0.702 0.035:0.028 0.010:0.011
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e = *x - * Results of training a vanilla neural network and
% * However this requires slow Hessian FaiR-N for the UCI Adult dataset with different
® ® computation. We propose a new formulation: hyperparameter combinations:
. . . A Faimess Index, 1 Index, 1,
% = % Let go(x) and g,(x) represent the inputs (i.e. e S e

logits) to the softmax function. We show that the . .
distance can be approximated as: e e fﬁfzi
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- d (x, B) is monotonic and is expressed as: i o2 0
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* Given a binary classifier with a decision 2dxB) V_J(x. B * Results compared to other baselines:
X ]

boundary, let X € /'L’ be an |_nput vector,_l_et + Corollary: Near the decision boundary, d (x, B) . : .
s(x) be a stratification function that partitions ~ d(x, B) original distance formulation
the input dataset into k groups based on =dx, - Comparing if the distance calculated is

one or more protected attributes. comparable to distances calculated in the input
. The faimess loss ie Relation to other fairness metrics space via a comparison with CERTIFAI

- Comparing our distance formulation to the

« There can be no formal guarantees on the - Comparing to four state of the art methods
Lpairness= | E [d(x,B)] — I ;E) b[ffffﬁ B)] | relation of fairness via reducing recourse gap that reduce error rate gaps
x| sf@)=n X sjmi= R
and falrne_ss through _other measures (the Mol Ay [EEE][ER] Time[  Muoeg
«  The robustness index: former relies on the distance to the boundary VNN2 082:0.09 03410041 0.13£001  3182+72  0.68% 0.04
hile the | | FaiRN-2  081+0.09 0.041:0.067 0.021+001 3244:852  0.06x0.03
Tovtust = E[d(x‘ B)] while the latter depend only on error rates). FaiRN-4  083£0.12 007009 005001 34491192  0.1x004
. PRT  078+006 0122005 010£002 3714844  0.16+0.05
L * However, we show that our fairness loss also OPPF 0774041  009+003 0042008 4242+ 1610 023 +0.04
* The overall objective is: encourages the reduction in true and false DataAug: 078+010  0.04+002  003:001 5201136 022007
. . . . RedApp’ 08107 005001  004:002  4194x114  0.19%0.04
Loveral = Leposs + Ap ﬁf{mwgss + Ar - 1/ Toopust positive rates between groups i.e., using this LargeM-2 0808 +0.09 0.044+0008 0020 0.006 4717+ 1948 0.03 +0.01

IOSS aISO he|pS Improve on equallzed OddS LargeM-4  0.829+0.12  0.049 + 0.004  0.08 +0.01 6315+ 1991  0.10 +0.05




