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An oracle generates example demonstrations on a subset of nodes Maximum Likelihood estimation: Assume access to techniques that optimize
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Challenges

@ A Globally informative demonstration provides the true
e . . . . cluster affiliation of a subset of nodes, T C V/, and is denoted
@ Difficult to fine tune constraint parameters like fairness =]

thresholds by Ay = {(u1, (1)), ..., (us, v(ue)) }, Yu; € T with vy(u)

indicating the cluster affiliation of node wu.

Greedy Clustering: Initialize all nodes in a separate singleton cluster. Iteratively merge
nodes to form k clusters. Perform local search to satisfy most likely constraint estimated
using maximum likelihood.

@ Many different ways to define and measure fairness

@ Inadvertent incomplete specification of fairness metrics
leads to biased outcomes when deployed

Experimental Results

Assumption: Nodes in each demonstration are randomly selected
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Deployment

@ Formalizing the problem of learning to generate fair clusters
from demonstrations

(a) Bank, wGF (b) Adult, wgo

Effect of #demonstrations and multi-constraint setting

@ Presenting two algorithms to identify the fairness constraints,

Figure: An illustration of incomplete specification of fairness metric . . . .
5 PIEE P generate fair clusters, and analyzing their theoretical guarantees

resulting in biased output— unequal distribution of green and blue nodes
In each cluster.
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@ Empirically demonstrating the effectiveness of our approach in
identifying the clustering constraints on three data sets

How to correctly identify the fairness metric that the
designer intends to optimize for a problem?

F-score

@ Generating fair and interpretable clusters with our approach
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wWeo  Relative distribution of a specific feature value 5] Expert Demonstrations  Algorithm Likelihood Clusters Key Takeaways:
Wic Homogeneity of clusters I5; @ Our approach identifies the fairness constraint in less than 2 log n demonstrations

Table: Example fairness and interpretable constraints. Figure: Overview of our approach.

@ Our algorithms construct the desired set of clusters and are highly efficient



