

Learning to Generate Fair Clusters from Demonstrations

Motivation

Fair Clustering

Challenges

- Many different ways to define and measure fairness
- Difficult to fine tune constraint parameters like fairness thresholds
- Inadvertent incomplete specification of fairness metrics leads to biased outcomes when deployed

Figure: An illustration of ideal setting with accurate specification.

Figure: An illustration of incomplete specification of fairness metric resulting in biased output- unequal distribution of green and blue nodes in each cluster.

How to correctly identify the fairness metric that the designer intends to optimize for a problem?

г			
	Symbol	Formula	Paramete
	ω_{GF}	Ratio of each feature value $\in [lpha, eta]$	lpha,eta
	ω_{EQ}	Relative distribution of a specific feature value	β
	ω_{IC}	Homogeneity of clusters	β
Table: Example fairness and interpretable constraints.			

Sainyam Galhotra, Sandhya Saisubramanian, and Shlomo Zilberstein

College of Information and Computer Sciences, University of Massachusetts Amherst

Problem Setting

An oracle generates example demonstrations on a subset of nodes to guide the search for desired fairness constraint.

- A clustering demonstration λ provides the inter-cluster and intra-cluster links for a subset of nodes from the dataset $T \subseteq V, |T| \ge 2$, by grouping them according to the underlying objective function and constraints, $\lambda = \{C_1, \ldots, C_t\}$ with each C_i denoting a cluster such that $\cup_i C_i = T$ and $t \leq k$.
- A **Globally informative demonstration** provides the true cluster affiliation of a subset of nodes, $T \subseteq V$, and is denoted by $\lambda_g = \{ \langle u_1, \gamma(u_1) \rangle, \ldots, \langle u_t, \gamma(u_t) \rangle \}, \forall u_i \in T \text{ with } \gamma(u) \}$ indicating the cluster affiliation of node *u*.

Assumption: Nodes in each demonstration are randomly selected and clustered according to ground-truth fairness constraints

Objective: Given a finite set of candidate fairness metrics (Ω) and a finite set of clustering demonstrations (Λ), identify a fairness metric $\omega_F \in \Omega$ required to be satisfied by the clusters when optimizing objective o.

Contributions

- Formalizing the problem of learning to generate fair clusters from demonstrations
- Presenting two algorithms to identify the fairness constraints, generate fair clusters, and analyzing their theoretical guarantees
- Empirically demonstrating the effectiveness of our approach in identifying the clustering constraints on three data sets
- Generating fair and interpretable clusters with our approach

Expert

Demonstrations

Algorithm

Likelihood

Figure: Overview of our approach.

Clusters

Algorithm Intuition

Maximum Likelihood estimation: Assume access to techniques that optimize fairness objectives $\omega \in \Omega$

- **(1)** Initialize the set of clusters according to the demonstrations λ
- ② Greedily merge closest pair of clusters until k clusters are left
- ③ Calculate constraint threshold for each fairness constraint and feature combination
- values
- Solution δ Choose the final clustering that has maximum likelihood of generating λ

Greedy Clustering: Initialize all nodes in a separate singleton cluster. Iteratively merge nodes to form k clusters. Perform local search to satisfy most likely constraint estimated using maximum likelihood.

Experimental Results

Empirically tested on 3 domains with various baselines. Additional results in paper. **1.** Comparison of estimated constraints for different techniques

2. Effect of #demonstrations and multi-constraint setting

(a) Effect of #demonstrations

Key Takeaways:

- Our approach identifies the fairness constraint in less than 2 log *n* demonstrations
- Our algorithms construct the desired set of clusters and are highly efficient

```
Q Run traditional fair clustering algorithm for each constraint with estimated threshold
```

(b) Adult, ω_{EQ}

(b) Fair and Interpretable clusters