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Algorithmic Fairness and Hyperparameters

Unfairness in Machine Learning models: with the increasing use of machine
learning (ML) in domains such as financial lending, hiring, criminal justice, and college
admissions, there has been a major concern for the potential for ML to unintentionally
encode societal biases and result in systematic discrimination.

Practical ML settings → optimizing the performance of ML models in a black-box
manner while enforcing fairness constraints.
Issue→ being tailored to specific models and fairness definitions, most existing algorithmic
fairness techniques are inapplicable to these settings.
Intuition → optimizing hyperparameters for both fairness and accuracy makes possible
to obtain less biased and still accurate models.
Our solution supports arbitrary fairness definitions, allows for multiple constraints to be
enforced simultaneously, and is complementary to existing bias mitigation techniques.
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Unfairness-accuracy trade-off by varying the
hyperparameters of XGBoost, RF, and NN on
a recidivism prediction task. Each dot corre-
sponds to a different hyperparameter config-
uration. For a given level of accuracy, models
with very different levels of unfairness can be
generated simply by changing the model hy-
perparameters.

Statistical definitions of fairness: there is no consensus on a unique definition of
fairness, and some of the most common definitions are conflicting.

Equal Opportunity (EO): equal True Positive Rates (TPR) across subgroups;

Equalized Odds (EOdd): equal False Positive Rates (FPR), in addition to EO;

Statistical Parity (SP): positive predictions to be unaffected by the value of the pro-
tected attribute, regardless of the actual true label;

A model is ε-fair if it violates the fairness definition by at most ε ≥ 0. In the case of EO,
a model is ε-fair if the difference in EO (DEO) is at most ε, i.e. if the absolute value of
difference of the TPRs (across subgroups) is at most ε.

Fair Bayesian Optimization

We propose Fair Bayesian Optimization (FairBO) to optimize the hyperparameters
of a black-box function while satisfying arbitrary fairness constraints. Our goal is to find

min
x∈X
{y(x) ‖ c(x) ≤ ε} ,

where y(x) is the main objective, c(x) a fairness constraint, and ε ∈ R+ an unfairness upper
bound. The idea is to place one model on the objective and one on the fairness constraint
(e.g., two independent Gaussian processes), and encode the probability of satisfying the
fairness definition in the acquisition.
We leverage the constrained expected improvement (cEI), an established acquisi-
tion function to extend BO to the constrained case:

cEI(x) = P (c(x) ≤ ε)EI(x), penalizing unfair hyperparameter.

Hyperparameter importance on fairness

We tune four algorithms: Random Forest (RF), XGBoost, neural network
(NN), and linear learner (LL). The role of each tuned hyperparameter on unfair-
ness (DSP) is evaluated via fANOVA: the regularization hyperparameters impact
fairness the most (e.g., in LL this is precisely the regularization factor alpha).

FairBO performance
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FairBO finds a fair accurate solution more quickly than random search (RS) and standard
BO, which can get stuck in accurate yet unfair regions and fail to return a feasible solution.
The horizontal black line represents the fairness constraint DSP ≤ 0.05.

Multiple fairness constraints
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• In contrast to most algorithmic fairness techniques, FairBO can seamlessly handle mul-
tiple fairness definitions simultaneously.

•Tuning RF on Adult, progressively adding more fairness constraints, represented by the
red arches (DFP ≤ 0.05, DEO ≤ 0.05, DSP ≤ 0.05).

•FairBO allows us to trade off relatively little accuracy for a more fair solution, which gets
progressively more fair as we add more constraints.

Model-agnostic and model-specific techniques

Validation error of the best fair models for model-specific (first three rows) and model-
agnostic fairness methods. We use the fairness constraint, DSP ≤ 0.1.

Method Adult German COMPAS

FERM [1] 0.164 ± 0.010 0.185 ± 0.012 0.285 ± 0.009
Zafar [2] 0.187 ± 0.001 0.272 ± 0.004 0.411 ± 0.063
Adversarial [3] 0.237 ± 0.001 0.227 ± 0.008 0.327 ± 0.002

FERM preprocess [1] 0.228 ± 0.013 0.231 ± 0.015 0.343 ± 0.002
SMOTE [4] 0.178 ± 0.005 0.206 ± 0.004 0.321 ± 0.002
FairBO (ours) 0.175 ± 0.007 0.196 ± 0.005 0.307 ± 0.001

•FERM, Zafar, and Adversarial are model-specific techniques for algorithmic fairness.

•FERM preprocessing and SMOTE are model-agnostic preprocessing on the data.

•FairBO emerges as a surprisingly competitive baseline that can outperform or compete
against these highly specialized techniques.

•FairBO acts on the hyperparameters → it can be even used on top of model-specific
fairness techniques, which come with their own hyperparameters.
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