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Ridehailing in Chicago:
Disparate impact of price discrimination algorithms

The City of Chicago releases
transportation datasets including
ridehailing that uses price
discrimination algorithms for
individualized price estimations

- We process 100 million ridehailing trips
- Each trip contains pickup and dropoff census tract
information, fare pricing, duration, length, etc.

Research Questions Black box price discrimination

algorithms in ridehailing
estimate fare pricing based on I
supply, demand, duration, and

- What if disadvantaged neighborhoods have less  length of the trip, in addition
supply relative to demand? to other factors.

- Price discrimination is a type of predictive
artificial intelligence (Al) algorithm.

- Does algorithmic bias manifest in fare pricing?
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Do monetary incentives that pull supply from minority
and impoverished neighborhoods manipulate traffic and
cause disadvantaged neighborhoods to surge?

Table 1: Combined effect sizes on fare price per mile by neighborhood attributes - Combined effect sizes scores are shown
for the fare price per mile given a set of neighborhood attributes. Combined effect sizes are weighted using a random effects

Method-1b: Random-effects
model [11]. The “Ridehailing” col contains bined effect sizes calculated for ridehailing trip fares, and the “Taxi”

mOde“ng from meta-anaIVSIS column contains combined effect sizes calculated for “Taxi” trip fares. “Pickup” and “Dropoff” columns designate fare price
Comblnmg effect size of bias at the city leve| per mile when being picked up or dropped of in a neighborhood and “p” presents the p-value for effect size calculations.
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prices to rise in the area.



