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(a) Joint model for the label classifier and policy. The encoder
f✓ maps the set of observed features Ot to the latent repre-
sentation z1. From this the classifier g predicts ŷ while the
policy ⇡� predicts the action at (the next feature to select or
STOP).
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(b) Model for the adversary. The
encoder f� maps the set of ob-
served features Ot to the latent rep-
resentation z2 from which the clas-
sifier g! predicts the sensitive at-
tribute b̂.

Figure 1: Joint framework for dynamic adversarial discovery of information (DADI)

x(i)
✓ Rd, a binary label y(i) 2 {0, 1}, and a binary sensitive attribute b(i) 2 {0, 1}. We acquire the

features in sequential order starting with an empty set O0 := ; at time t = 0. At every later timestep
t, we choose a subset of features from the unselected set of features, S(i)

t ✓ {1, . . . , d} \O(i)
t�1. After

each new acquisition step, the classifier will have access to feature values in O
(i)
t := S

(i)
t [O
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t�1.

We keep acquiring features up to time T (i) when we meet a stopping criterion. At that point, we will
classify x(i) using only the set of features in O

(i)
T (i) . Note that the specific set of selected features

O
(i)
T (i) will generally be different for each individual i. To learn the model that minimizes classification

loss while maximizing the loss of the adversary we formulate the following optimization problem.
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Where LC and LA are the suitable losses for the label classifier and the adversary. The encoder f✓
feeds into a classifier g for the label prediction ŷ while f� and g! are the encoder and classifier
for the sensitive attribute prediction b̂. Hyperparameter � specifies the desired balance between
classification performance and fairness. When clear from context, we drop the superscript (i).

Markov decision process We define a Markov decision process (MDP) to find the set of features
O

(i)
T that minimizes the objective in Eq. 1. For each episode, the state at time t is represented by

the set of selected features {xj}j2Ot . The size of the state space is 2d, the powerset of the feature
set. At each timestep t, the action space consists of the set of unselected features {1, . . . , d} \ Ot�1

and an additional STOP action which, upon selection, stops the acquisition process after which the
rewards are computed. The agent’s reward function, computed at end of the episode for individual i,
corresponds to
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where the first reward encourages accurate classification and the second reward encourages low
mutual information between the feature set and the sensitive attribute. Now, if we now consider a
policy ⇡⇤

�, parametrized by �, that is optimal for this MDP, then ⇡⇤

� is also the optimal solution to
the objective in Eq. 1. We can proof this by maximizing the aggregated reward in Eq. 2 over the
population P
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which is equivalent to the minimization objective in Eq. 1.
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Two equally qualified candidates apply for the same 
job. However, one has a  traditional background while 
the other has taken a more unconventional path. An 
algorithmic recruiter will choose certainty and hire the 
familiar candidate. A fair hiring manager, in contrast, 
would instead first acquire more information before 
making an equally confident decision for both 
candidates.

We argue that every individual should have an equal 
error rate in expectation which we achieve by 
additional feature collection at prediction time.

Individual error parity

Given a partial feature sets Oi and 
probabilistic classifier h we define the 
individual-level expected error rate or risk

For two individuals i and j individual error 
parity requires the individual risk to be equal  

Prediction-time active-feature acquisition

We work in a setting where one starts with no information about an individual and 
additional features can be acquired at feature-specific cost. For this, we need
• A classifier that can handle partial feature sets. 

We use distribution-based imputation for random forests.
• An acquisition strategy that determines which unselected feature should be selected.

We maximize the cost-normalized expected utility of unselected features. 
• A stopping criterion that determines when to stop selecting additional features.

We use confidence thresholds to attain individual error parity.

Connection to group fairness

• Perfect individual error parity across a 
population P necessarily yields equal 
accuracy across groups in P.

• Perfect individual error parity implies
equal false positive and false negative 
rates across groups that have equal base 
rates or across groups with unequal base 
rate when using group-level calibration.
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Unfair outcomes

Equal feature budget for all individuals

Budget threshold

Confidence thresholds distribute feature budget to individuals for which the classifier faces most 
uncertainty. This yields individual error parity as predictions are equally accurate in expectation.

Results

We show how confidence thresholds mitigate 
both group and individual unfairness using the 
Mexican Poverty dataset (Noriega-Campero et 
al. 2019). We benchmark against a baseline 
where the feature budget is equally distributed 
across all individuals. Residual unfairness when equalizing error rates.

Redistribution of feature budgets across groups. Residual unfairness when equalizing false-positive rates.

Individual

Group

Group

Individual

Conclusion

We propose individual error parity as an 
individual fairness notion in an active 
feature acquisition setting and introduce a 
method for simultaneously mitigating group 
and individual unfairness in this setting.

Future work

• Use individual error disparity to guide fairer 
feature selection at the population level.

• Investigate implications on privacy.
• Effects of miscalibration and mitigation of these 

effects using individual calibration methods.


